Connect with us

News

SpaceX to shrink, tweak Starship’s forward flap design, says Elon Musk

Elon Musk says that SpaceX is redesigning Starship's forward flaps. (NASASpaceflight - bocachicagal)

Published

on

SpaceX CEO Elon Musk says that there is a “slight error” with the current design of Starship’s forward flaps, necessitating a few small but visible changes on future prototypes of the spacecraft.

Measuring 9m (30 ft) wide and approximately 50m (~165 ft) from tip to tail, Starship is the combined upper stage, spacecraft, tanker, and lander of a two-stage, fully-reusable rocket with the same name. While SpaceX has a long ways to go to achieve it, the company’s ambition is for Starship and its Super Heavy booster to be the most easily and quickly reusable spacecraft and rocket booster ever built, nominally enabling the same-day reuse of both.

Beyond a Space Shuttle-style heat shield of blankets and ceramic tiles, the Starship upper stage is meant to achieve that reusability by descending through the atmosphere and landing unlike any other spacecraft, plane, or rocket ever flown. Instead of flying, gliding, or knifing through the atmosphere nose or tail-first, Starship freefalls perpendicular to the ground for the last few dozen kilometers (~10-20 mi) before aggressively flipping into a vertical orientation at the last second and landing propulsively on its tail. Now, according to Elon Musk, two of the four ‘flaps’ that largely make that exotic maneuver possible are set for a small but significant redesign.

Over the course of five suborbital test flights of full-scale Starship prototypes completed between December 2020 and May 2021, SpaceX took that exotic landing concept from the drawing board and subscale wind tunnel testing to reality. Though four of those five tests ended in destruction, their respective Starship prototypes really only failed in the last 15-30 seconds of test flights that were more than six minutes long.

After reaching an apogee of 10-12.5 km (~6.2-7.8 mi) over the course of some four and a half minutes, all five Starship prototypes successfully shut down their Raptor engines, tipped over onto their bellies, and then used a combination of small pressurized gas thrusters and four large flaps to stably fall back to Earth. Much like a skydiver can tweak their body, arms, and legs to control their orientation and attitude, Starship uses two pairs of forward and aft flaps to achieve a very similar level of control.

Advertisement
-->

Thanks to Starship’s significant surface area and relatively low mass shortly before landing, that unprecedented freefall-style descent naturally slows the rocket to just 100-200 mph (~50-100 m/s) while simultaneously allowing SpaceX to avoid the massive complexity and added mass of structural wings or fins like those on the Space Shuttle. Further, whereas the Shuttle used its wings to glide (albeit like a brick) and land on very long runways, Starship is designed to use three of its six Raptor engines to flip into a vertical orientation and land much like SpaceX’s own spectacularly successful Falcon boosters.

During the actual process of reentry, in which Starship uses a heat shield made up of ~15,000 ceramic tiles to slow from orbital (Mach 25 or ~7.5 km/s) to subsonic speeds, those same flaps also come in useful to control the vehicle’s angle of attack and thus the degree of extreme heating experienced. According to Musk, to improve the moment arm (i.e. leverage or, all else equal, torque) of Starship’s forward flaps and reduce or remove undesirable aerodynamic characteristics, SpaceX is going to shrink those forward flaps further, move them closer together and more towards the tip of Starship’s nose, and angle them toward the ship’s leeward side (back).

Apparently, those relatively minor changes mean that a portion of Starship’s forward flaps will no longer be directly subjected to reentry heating, potentially allowing SpaceX to entirely remove static “aerocovers” that wrap around the ship’s flaps to prevent superheated plasma and gas from reaching sensitive components. Ironically, SpaceX’s thermal protection team completed the installation of heat shield tiles on one of those forward flap aerocovers for the first time ever just a few days ago – a structure and portion of heat shield that will apparently no longer be needed on future Starships.

For now, though, it looks like Ship 20 will attempt Starship’s first orbital launch with its now-outdated forward flaps. Depending on how far along Ship 21 production is, the next prototype could feasibly sport that new flap design.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adds new feature that will be great for crowded parking situations

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

Published

on

Credit: Grok

Tesla has added a new feature that will be great for crowded parking lots, congested parking garages, or other confusing times when you cannot seem to pinpoint where your car went.

Tesla has added a new Vehicle Locator feature to the Tesla App with App Update v4.51.5.

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

While there are several new features, which we will reveal later in this article, perhaps one of the coolest is that of the Vehicle Locator, which will now point you in the direction of your car using a directional arrow on the home screen. This is similar to what Apple uses to find devices:

In real time, the arrow gives an accurate depiction of which direction you should walk in to find your car. This seems extremely helpful in large parking lots or unfamiliar shopping centers.

Getting to your car after a sporting event is an event all in itself; this feature will undoubtedly help with it:

Tesla’s previous app versions revealed the address at which you could locate your car, which was great if you parked on the street in a city setting. It was also possible to use the map within the app to locate your car.

However, this new feature gives a more definitive location for your car and helps with the navigation to it, instead of potentially walking randomly.

It also reveals the distance you are from your car, which is a big plus.

Along with this new addition, Tesla added Photobooth features, Dog Mode Live Activity, Custom Wraps and Tints for Colorizer, and Dashcam Clip details.

All in all, this App update was pretty robust.

Continue Reading

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading

News

Tesla AI5 project begins to move forward

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team.

Published

on

Credit: Tesla

Tesla supplier Samsung is preparing to manufacture the AI5 chip, which will launch the company’s self-driving efforts even further, with its latest move.

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team, which will help resolve complex foundry challenges, stabilize production and yields, and ensure manufacturing goes smoothly for the new project.

The hiring push signals that Tesla’s AI5 project is moving forward quickly at Samsung, which was one of two suppliers to win a contract order from the world’s leading EV maker.

TSMC is the other. TSMC is using its 3nm process, reportedly, while Samsung will do a 2nm as a litmus test for the process.

The different versions are due to the fact that “they translate designs to physical form differently,” CEO Elon Musk said recently. The goal is for the two to operate identically, obviously, which is a challenge.

Some might remember Apple’s A9 “Chipgate” saga, which found that the chips differed in performance because of different manufacturers.

The AI5 chip is Tesla’s next-generation hardware chip for its self-driving program, but it will also contribute to the Optimus program and other AI-driven features in both vehicles and other projects. Currently, Tesla utilizes AI4, formerly known as HW4 or Hardware 4, in its vehicles.

Tesla teases new AI5 chip that will revolutionize self-driving

AI5 is specialized for use by Tesla as it will work in conjunction with the company’s Neural Networks, focusing on real-time inference to make safe and logical decisions during operation.

Musk said it was an “amazing design” and an “immense jump” from Tesla’s current AI4 chip. It will be roughly 40 times faster, and have 8 times the raw compute, with 9 times the memory capacity. It is also expected to be three times as efficient per watt as AI4.

AI5 will make its way into “maybe a small number of units” next year, Musk confirmed. However, it will not make its way to high-volume production until 2027. AI5 is not the last step, either, as Musk has already confirmed AI6 would likely enter production in mid-2028.

Continue Reading