Connect with us

News

SpaceX installs orbital Starship heat shield prototype with robots

SpaceX has begun testing methods of installing Starship's massive heat shield in South Texas. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has begun large-scale Starship heat shield installation tests with the help of robots delivered last month in a sign that the company has already begun preparing for the rocket’s first orbital flight test campaign.

Designed to eventually replace SpaceX’s workhorse Falcon 9 and Falcon Heavy launch vehicles, Starship is a fully-reusable two-stage rocket powered by methane and oxygen-fueled Raptor engines. Just like Falcon 9, Starship’s first stage (known as Super Heavy) will launch the combined spacecraft and upper stage to an altitude of 70 to 100 km (40-65 mi) and velocity of ~2.5 to 3 kilometers per second (1.5-1.9 mi/s). Super Heavy will separate, boost back towards land, and either land back at the launch pad or on a floating platform.

SpaceX already has extensive experience launching, landing, and reusing orbital-class rocket boosters thanks to Falcon 9 and Heavy, which have completed 57 landings and been reused 39 times in less than five years. The Starship upper stage, however, will have to survive orbital-velocity atmospheric reentries some 3 to 5 times faster and exponentially more energetic than Super Heavy boosters. To do so routinely while keeping Starship cost and complexity low and reusability high, SpaceX will have to develop an unprecedentedly effective heat shield that is easier to install, maintain, and reuse than anything that has come before it.

As with all SpaceX programs, the company began Starship heat shield installation development as soon as possible, installing a handful of tiles (presumably early-stage prototypes) on Starhopper as far back as H1 2019. This continued with small hexagonal tile installation tests on Starships SN1, SN3, SN4, SN5, and SN6 throughout 2020. While those coupon tests obviously didn’t involve orbital-class reentry heating or buffeting, they were still useful to characterize the mechanical behavior of heat shield tiles under the stress of cryogenic propellant loading, Raptor static fires, and hop tests.

Advertisement
SpaceX tested hexagonal Starship heat shield tiles on Starhopper’s second and final hop test. (NASASpaceflight – bocachicagal)
Starship SN4, April 2020. (NASASpaceflight – bocachicagal)
Starship SN5, August 2020. (NASASpaceflight – bocachicagal)
SpaceX tested a few Starship heat shield tiles in 2019 on Cargo Dragon’s orbital CRS-18 mission. (SpaceX)

In 2019, SpaceX even tested a few ceramic Starship heat shield tiles on an orbital Cargo Dragon mission for NASA. The fact that no more orbital Cargo or Crew Dragon tests were acknowledged seems to suggest that the demonstration was a success, proving that the tiles can stand up to the stresses of reentry from low Earth orbit (LEO).

Behind the scenes, SpaceX is assuredly performing extensive laboratory-style tests with tiles and an agreement signed with NASA Ames Research Center confirmed that the company is using the facility’s arcjet to physically simulate the conditions of orbital-velocity reentry. Tests on the scale of a full Starship, however, are an entirely different story.

The first sign of broader-scale heat shield installation test was spotted on July 9th by local resident Andrew Goetsch, aka Nomadd. (NASASpaceflight – Nomadd)

The first signs of large-scale heat shield installation testing appeared on July 9th when local resident and photographer Andrew Goetsch (Nomadd) captured photos of a test coupon covering half of an entire steel Starship ring. In April 2020, CEO Elon Musk confirmed on Twitter that the current design involved affixed heat shield tiles directly to Starship’s steel hull with steel studs. It’s unclear how exactly the company is installing steel studs directly onto the ~4mm (0.15 in) thick skins of a pressure vessel or if an off -the-shelf solution was available but Nomadd’s July 9th photos explicitly show the process required to refine the settings on the mystery stud installer.

SpaceX accepted delivery of several manufacturing robots on July 21. (NASASpaceflight – bocachicagal)
Inconspicuously labeled “HEAT SHIELD”, one of those robots was spotted two weeks later. (NASASpaceflight – bocachicagal)

One month after Nomadd’s spotting, three weeks after a robot delivery, and five days after one of those robots – labeled “HEAT SHIELD – was spotted in action, the first large-scale heat shield installation test article was spotted inside one of SpaceX’s several production tents. The team involved clearly had some fun with the process, installing the tiles in the form of a SpaceX “X”.

Another five days later, photos of the first large-scale heat shield installation test were captured for the first time. (NASASpaceflight – bocachicagal)
August 10th. (NASASpaceflight – bocachicagal)

In retrospect, robots could be a perfect solution for the affordable, high-volume installation of the thousands of heat shield tiles a single Starship will need. Once tolerances are high enough, it’s conceivable that multiple different Starship sections could be individually outfitted with studs and heat shield tiles by robot, inspected by humans, and joined together to form a complete Starship. Humans would likely need to manually install a gap of tiles around the weld lines of those final sections, but the manual installation work would be reduced to a minimum while keeping the required infrastructure dead simple.

Ultimately, a great deal of work remains before SpaceX can even begin to feasibly attempt orbital Starship test flights, but it’s hard not to get excited by the fact that some of that preparatory work has already visibly begun in South Texas.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms Full Self-Driving still isn’t garnering interest from lagging competitors

Published

on

Credit: Tesla

Tesla executive Sendil Palani confirmed in a post on social media platform X that Full Self-Driving, despite being the most robust driver assistance program in the United States, still isn’t garnering any interest from lagging competitors.

Tesla has said on several occasions in the past that it has had discussions with a competing carmaker to license its Full Self-Driving suite. While it never confirmed which company it was, many pointed toward Ford as the one Tesla was holding dialogue with.

At the time, Ford CEO Jim Farley and Tesla CEO Elon Musk had a very cordial relationship.

Despite Tesla’s confirmation, which occurred during both the Q2 2023 and Q1 2024 Earnings Calls, no deal was ever reached. Whichever “major OEM” Tesla had talked to did not see the benefit. Even now, Tesla has not found that dance partner, despite leading every company in the U.S. in self-driving efforts by a considerable margin.

Elon Musk says Tesla Robotaxi launch will force companies to license Full Self-Driving

Palani seemed to confirm that Tesla still has not found any company that is remotely interested in licensing FSD, as he said on X that “despite our best efforts to share the technology,” the company has found that it “has not been proven to be easy.”

The question came just after one Tesla fan on X asked whether Tesla would continue manufacturing vehicles.

Because Tesla continues to expand its lineup of Model Y, it has plans to build the Cybercab, and there is still an immediate need for passenger vehicles, there is no question that the company plans to continue scaling its production.

However, Palani’s response is interesting, especially considering that it was in response to the question of whether Tesla would keep building cars.

Perhaps if Tesla could license Full Self-Driving to enough companies for the right price, it could simply sell the suite to car companies that are building vehicles, eliminating the need for Tesla to build its own.

While it seems like a reach because of Tesla’s considerable fan base, which is one of the most loyal in the automotive industry, the company could eventually bail on manufacturing and gain an incredible valuation by simply unlocking self-driving for other manufacturers.

The big question regarding why Tesla can’t find another company to license FSD is simply, “Why?”

Do they think they can solve it themselves? Do they not find FSD as valuable or effective? Many of these same companies didn’t bat an eye when Tesla started developing EVs, only to find themselves years behind. This could be a continuing trend.

Continue Reading

News

Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee

Published

on

Credit: Tesla

Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.

Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.

These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.

He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.

Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.

Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.

Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”

This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.

Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.

Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.

Continue Reading

News

Tesla Model Y lineup expansion signals an uncomfortable reality for consumers

Published

on

Credit: Tesla

Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.

However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.

Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.

Tesla brings closure to Model Y moniker with launch of new trim level

While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.

Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.

But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.

Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.

Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.

Minor Expansions of the Model Y Fail to Address Family Needs for Space

Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.

Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.

Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.

Tesla appears to be mulling a Cyber SUV design

Model Y Expansion Doesn’t Boost Performance, Value, or Space

You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.

The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?

Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity

The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.

Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.

Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.

Continue Reading