Connect with us

News

SpaceX shrugs off Starship implosion and gets back to work as Elon Musk talks next steps

Technicians have already begun stacking and integrating different sections of Starship SN02. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has shrugged off the catastrophic implosion of its first serial Starship prototype (SN01) and begun stacking sections of the next ship (SN02) while CEO Elon Musk talks next steps for the next-generation rocket program.

By now, it’s reasonably clear that the demise of Starship SN01’s tank and engine section came as a bit of surprise to SpaceX itself, while it assuredly shocked non-employees and local residents who happened to be watching on eve of the anomaly. CEO Elon Musk himself appears to have expected different results, noting that – thankfully – the likely source of the Starship’s unforeseen failure had already been determined.

Despite the apparent setback, it appears that SpaceX won’t have to wait long at all to continue its uniquely ‘hardware-rich’ Starship test campaign. With a workforce now several hundred strong and a great deal of hands-on and strategic experience gained from building Starships Mk1 and SN01, SpaceX is now practically churning out parts for future Starship SNxx prototypes. Most notably, Starship SN01’s predecessor is potentially just a few days away from being stacked into a finished tank section, hinting at the almost unfathomably speed that SpaceX is able to build full-scale vehicles even in early days of the program.

Three days after Starship SN01’s spectacular implosion and unintentional ‘launch’, SpaceX CEO Elon Musk took to Twitter to share a video captured by local Boca Chica Village resident ‘bocachicagal’ and posted by NASASpaceflight.com. Attached above, Mary’s video offers an incredibly vivid view of the rocket’s violent demise while further revealing the apparent location where the failure started – Starship SN01’s engine section and thrust structure.

Advertisement
Given that Musk already revealed that Starship SN02 would feature improved tank welds, it’s safe to assume that the prototype will also have an improved thrust structure (i.e. “puck”).

Confirming suspicions, Musk quickly implied that the Starship’s failure originated in or around its thrust structure (‘thrust puck’), further noting that Starship SN02 – already in the middle of production – would be “stripp[ed]…to [the] bare minimum to test the thrust puck to dome weld.” In essence, it sounds like Starship SN02 will become SpaceX’s third intentional “test tank”, following in the footsteps of two small Starship tanks built and pressurized to failure to verify the quality of Starship manufacturing.

Starship SN01’s ‘thrust puck’ or thrust structure and aft liquid oxygen tank dome are pictured on February 12th. (NASASpaceflight – bocachicagal)
Starship SN02’s ‘thrust puck’ – pictured on March 2nd – already looks substantially different. (NASASpaceflight – bocachicagal)

Starship SN02’s thrust structure design already appears to be a departure from SN01’s apparently unsuccessful iteration. Given that it was already partially completed before Starship SN01 failed during testing, it’s possible that SpaceX will attempt to reinforce the SN02 thrust structure, but the company may have already implemented upgrades before its engineers had the benefit of hindsight from February 28th’s test.

Regardless of what happens to Starship SN02, the fact that SpaceX is apparently building full-scale, (mostly) functional Starship tank sections from raw materials to the launch pad in a matter of a few weeks is incredibly encouraging for the next-generation rocket development program. As an external observer, it’s certainly disappointing to see an impressive piece of rocket hardware shredded in an evening after weeks of work, but that speed – and SpaceX’s willingness to accept failures at the scale of SN01 – suggests that each prototype is almost unfathomably cheap. Unofficial estimates peg the cost of SN01-like Starship prototypes at just several million dollars apiece, while the cost of the raw steel itself is so low that it might as well be negligible.

Even if it takes SpaceX 5-10 SN01-class failures to mature its South Texas rocket factory into a reliable machine and get to a point of stability and confidence with suborbital Starship flights, the total cost of that trial and error is comically insignificant relative to almost any other rocket development program in history. To be clear, SpaceX might benefit from going a little slower and refining Starship’s prototype design, but it’s impossible to know from an armchair. For now, the best available advice is to simply enjoy the show and view each potential test failure as just another small step along the path to Mars.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla engineers deflected calls from this tech giant’s now-defunct EV project

Published

on

Image Created by Grok

Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”

Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.

However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.

Apple canceling its EV has drawn a wide array of reactions across tech

It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.

Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”

Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.

In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”

Musk said in full:

“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”

Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.

Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.

Continue Reading

Elon Musk

Tesla to a $100T market cap? Elon Musk’s response may shock you

Published

on

tesla elon musk

There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.

However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.

To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.

Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI

Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:

“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”

Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.

SpaceX officially acquires xAI, merging rockets with AI expertise

Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”

Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.

Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.

Continue Reading

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading