News
SpaceX is building launch pad tanks out of Starship parts and that’s a big deal
SpaceX has begun installing the first of numerous propellant storage tanks at its first orbital South Texas launch facilities – a mostly ordinary and expected step made extraordinary by the fact that those tanks will be built out of Starship parts.
Labeled “GSE” for Ground Support Equipment, the first signs of those self-built storage tanks began appearing at SpaceX’s Boca Chica Starship factory less than two months ago in mid-February. A matter of weeks later, the first of those SpaceX-brand cryogenic storage tanks is off to the launch site for installation (and insulation) while at least two more tanks are well on their way to completion.
While a few ground starge tanks may look like a distraction in the scope of a program tasked with building the world’s largest (and fully reusable) rocket, the existence of those tanks is far more significant than it might initially appear.
Simply put, rocket propellant storage – even for extremely cold cryogenic liquids like those that SpaceX uses – is a thoroughly solved problem. Numerous commercial vendors exist and industrial demand for practically identical tanks is far higher, further lowering commercial tank costs even for those with niche use-cases thanks to economies of scale. For SpaceX’s purposes, major discounts could like be secured given that the company would need to purchase around three to four-dozen commercial-off-the-shelf (COTS) 100,000 gallon tanks to supply a launch pad with enough commodities for two back-to-back launches of Starship and Super Heavy.
That initial launch capability – which SpaceX appears to be working towards – would likely allow the company to start orbital refueling test flights (and Starlink launches, perhaps) immediately after completion. However, that initial capability wouldn’t suffice for ambitious missions to Mars, the Moon, or higher Earth orbits; where one Starship would need to be rapidly refueled with 3-10+ tanker launches. A launch facility capable of supporting 5-10 back-to-back launches (optimally just a few hours apart) would require many times more propellant storage.


The point is that for the initial target of two (or so) launches between commodity resupply, SpaceX could likely acquire the few dozen new storage tanks it would need for a few million dollars apiece for a total cost likely between $50M and $100M. Instead, SpaceX has decided to design and build its own propellant storage tanks. Even more significantly, the GSE tanks SpaceX has already begun building appear to be virtually identical to Starships.
In other words, SpaceX is effectively taking identical rocket parts, slightly tweaking a handful of those parts, and turning what could have been a rocket into a propellant storage tank. This is significant because relative to all other rockets in history, even including SpaceX’s own Falcon 9 and Heavy, building storage tanks with unchanged rocket parts on a rocket assembly line would be roughly akin to hiring Vincent van Gogh to paint lane lines.
Ever since Elon Musk made the radical decision to switch from composite structures to stainless steel, Starship has always aimed to be radically different than any large rocket before it. Crucially, by using commodity steel, the CEO imagined SpaceX would be able to build Starships fairly easily and for pennies on the dollar next to even SpaceX’s exceptionally affordable Falcon 9. In the last 18 months, it’s become apparent that SpaceX has built a factory capable of churning out one or two massive steel rockets per month and is willing to consign at least four or five of those Starship prototypes to all-but-guaranteed failures for the sake of data-gathering and iterative improvement.


Technically, the most logical conclusion would be that Musk was right and that SpaceX has quickly developed the ability to build steel rockets larger than any other launch vehicle on Earth for perhaps just $5M or less apiece. However, SpaceX is also raising on the order of $1-2B in venture capital annually, so they could technically afford to shoulder the cost of extremely expensive Starship prototypes if the company was confident that there was a path to cut those costs and reach the targets needed for the rocket to make economical sense.
Now, the existence of self-built propellant storage tanks virtually identical to flightworthy Starship airframes all but guarantees that SpaceX is already building Starships for a few million dollars each – and possibly much less. More than a year ago, Musk said that SpaceX was already building the Raptor engines that will power Starship and Super Heavy for less than $1M apiece and was working to mass-produce a simpler variant for less than $250,000. Beyond engines and primary structures, Starship hardware is fairly simple and ranges from Tesla-derived motors, basic flaps, and landing legs to off-the-shelf pressure vessels (COPVs) and wiring. SpaceX has managed that extraordinary cost-efficiency despite the fact that Boca Chica is still nowhere close to the level of volume production Musk is aiming for, meaning that there are still far more efficiencies waiting to be realized.


For now, with virtually no retooling and the exact same assembly line, SpaceX’s South Texas rocket factory is busy churning out massive launch pad tanks – one of which is already preparing for installation while another two speed towards completion. All told, SpaceX appears to be preparing foundations for seven 9m-wide (30ft), 27.5m-tall (90ft) Starship-derived tanks that should be capable of storing ~2200 tons (4.9 million pounds) of subcooled liquid methane in three tanks and ~7300 tons (16.1 million pounds) of liquid oxygen in the other four tanks – enough for two orbital Starship launches.
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.
News
Ferrari Luce EV: Italian supercar maker reveals interior and interface design
Ferrari, the Italian supercar maker, has revealed the name, interior, and interface design of its first-ever electric vehicle project, the Luce, initiating a new chapter in the rich history of the company’s automotive books.
This is the first time Ferrari has revealed such intimate details regarding its introductory EV offering, which has been in the realm of possibility for several years.
As more companies continue to take on EV projects, and some recede from them, supercar companies like Ferrari and Lamborghini are preparing to offer electric powertrains, offering super-fast performance and a new era of speed and acceleration.
Luce – a New Chapter in Ferrari
The company said that the name Luce is “more than a name. It is a vision.” Instead of looking at its first EV offering as a means to enter a new era of design, engineering, and imagination. The company did not want to compromise any of its reputation, high standards, or performance with this new project. It sees it as simply a page turn, and not the closing of a book:
“This new naming strategy reflects how the Ferrari Luce marks a significant addition to the Prancing Horse’s line-up, embodying the seamless expression of tradition and innovation. With its cutting-edge technology, unique design, and best-in-class driving thrills, it unites Ferrari’s racing heritage, the timeless spirit of its sports cars, and the evolving reality of contemporary lifestyles. It testifies to Ferrari’s determination to go beyond expectations: to imagine the future, and to dare. Because leading means illuminating the path ahead – and Luce embodies that mindset.”
Ferrari Luce Design
Ferrari collaborated with LoveFrom, a creative collective founded by Sir Jony Ive and Marc Newson. The pair has been working with Ferrari for five years on the Luce design; everything from materials, ergonomics, interface, and user experience has been designed by the two entities.
The big focus with the interior was to offer “a first, tangible insight into the design philosophy…where innovation meets craftsmanship and cutting-edge design. The team focused on perfecting and refining every solution to its purest form — not to reinvent what already works, but to create a new, carefully considered expression of Ferrari.”
RELATED:
Ferrari CEO compliments Tesla for shaking up the automotive industry
The company also said:
“Ultimately, the design of the Ferrari Luce’s interior is a synthesis of meticulous craftsmanship, respect for tradition, and thoughtful innovation. It offers a new choice for Ferrari enthusiasts – one that honours the past while embracing the future, and exemplifies the brand’s enduring commitment to quality, performance, and cultural significance.”
The appearance of the elements that make up the interior are both an ode to past designs, like the steering wheel, which is a reinterpretation of the iconic 1950s and 1960s wooden three-spoke Nardi wheel, and fresh, new designs, which aim to show the innovation Ferrari is adopting with this new project.
Interior Highlights
Steering Wheel
The Ferrari Luce is a shout-out to the Nardi wheel from the 1950s and 60s. It is constructed of 100% recycled aluminum, and the alloy was developed specifically for the vehicle to “ensure mechanical resistance and a superb surface quality for the anodisation process.”
It weighs 400 grams less than a standard Ferrari steering wheel:

Credit: Ferrari
It features two analogue control modules, ensuring both functionality and clarity, Ferrari said. The carmaker drew inspiration from Formula One single-seaters, and every button has been developed to provide “the most harmonious combination of mechanical and acoustic feedback based on more than 20 evaluation tests with Ferrari test drivers.”
Instrument Cluster and Displays
There are three displays in the Luce — a driver binnacle, control panel, and rear control panel, which have all been “meticulously designed for clarity and purpose.”
The binnacle moves with the steering wheel and is optimized for the driver’s view of the instrumentation and supporting driver performance.
- Credit: Ferrari
- Credit: Ferrari
Displays are crafted by Samsung and were specifically designed for the car, using a “world first – three large cutouts strategically reveal the information generated by a second display behind the top panel, creating a fascinating visual depth that captures the eye.”
Samsung Display engineers created an ultra-light, ultra-thin OLED panel for the vehicle.

Credit: Ferrari
Pricing is still what remains a mystery within the Luce project. Past reports have speculated that the price could be at least €500,000, or $535,000.
Elon Musk
Elon Musk pivots SpaceX plans to Moon base before Mars
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Elon Musk has clarified that SpaceX is prioritizing the Moon over Mars as the fastest path to establishing a self-growing off-world civilization.
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Why the Moon is now SpaceX’s priority
In a series of posts on X, Elon Musk stated that SpaceX is focusing on building a self-growing city on the Moon because it can be achieved significantly faster than a comparable settlement on Mars. As per Musk, a Moon city could possibly be completed in under 10 years, while a similar settlement on Mars would likely require more than 20.
“For those unaware, SpaceX has already shifted focus to building a self-growing city on the Moon, as we can potentially achieve that in less than 10 years, whereas Mars would take 20+ years. The mission of SpaceX remains the same: extend consciousness and life as we know it to the stars,” Musk wrote in a post on X.
Musk highlighted that launch windows to Mars only open roughly every 26 months, with a six-month transit time, whereas missions to the Moon can launch approximately every 10 days and arrive in about two days. That difference, Musk stated, allows SpaceX to iterate far more rapidly on infrastructure, logistics, and survival systems.
“The critical path to a self-growing Moon city is faster,” Musk noted in a follow-up post.
Mars still matters, but runs in parallel
Despite the pivot to the Moon, Musk stressed that SpaceX has not abandoned Mars. Instead, Mars development is expected to begin in about five to seven years and proceed alongside the company’s lunar efforts.
Musk explained that SpaceX would continue launching directly from Earth to Mars when possible, rather than routing missions through the Moon, citing limited fuel availability on the lunar surface. The Moon’s role, he stated, is not as a staging point for Mars, but as the fastest achievable location for a self-sustaining off-world civilization.
“The Moon would establish a foothold beyond Earth quickly, to protect life against risk of a natural or manmade disaster on Earth,” Musk wrote.

