News
SpaceX to mature Starship Moon landing and orbital refueling tech with NASA’s help
NASA has announced 19 technology partnerships between the agency’s many spaceflight centers and 13 companies, including SpaceX, Blue Origin, and more. This round of Space Act Agreements (SAAs) shows a heavy focus on technologies and concepts that could benefit exploration of the Moon and deep space more generally, including lunar landers, food production, reusable rockets, and more.
Put simply, all 19 awards are great and will hopefully result in tangible products and benefits, but SpaceX has a track record of achievement on the cutting edge of aerospace that simply has not been touched over the last decade. As such, the company’s two SAAs are some of the most interesting and telling, both ultimately focused on enabling Starship launches to and landings on the Moon and any number of other destinations in the solar system. Perhaps most importantly, it signals a small but growing sect within NASA that is willing and eager to acknowledge Starship’s existence and actively work with SpaceX to both bring it to life and further spaceflight technology in general.
One agreement focuses specifically on “vertically land[ing] large rockets on the Moon”, while the other more generally seeks to “advance technology needed to transfer propellant in orbit”, a feature that Starship’s utility would be crippled without. In this particular round of SAAs, they will be “non-reimbursable” – bureaucratic-speak for a collaboration where both sides pay their own way and no money is exchanged. SpaceX’s wins ultimately show that, although NASA proper all but refuses to acknowledge Starship, the many internal centers it is nothing without are increasingly happy to extend olive branches towards the company and its ambitious next-generation rocket.
“SpaceX of Hawthorne, California, will work with NASA’s Kennedy Space Center in Florida to advance their technology to vertically land large rockets on the Moon. This includes advancing models to assess engine plume interaction with lunar regolith.”
“SpaceX will work with Glenn and Marshall to advance technology needed to transfer propellant in orbit, an important step in the development of the company’s Starship space vehicle.”
NASA, July 30th, 2019

Giant rockets on the Moon
SpaceX’s first SAA centers around studying the task of landing Starship – a “large rocket” – on the Moon and attempting to understand just how the Moon’s powdery regolith (i.e. inorganic topsoil) will respond when subjected to the plume of a Raptor engine. Put simply, the task of landing a spacecraft as massive as Starship has never been attempted on the Moon, and the process itself – irrespective of any potential surprises from plume-regolith interaction – poses some obvious challenges.
In the most basic sense, Starship is massive. According to the vehicle’s circa. 2018 dimensions, it will stretch 55m (180 ft) from nose to tail, be 9m (30 ft) in diameter, and weigh (per 2017 specs) ~85 tons (190,000 lb) empty and upwards of ~1350 tons (2.95 million lbs) fully fueled. For reference, that is almost 80% as tall and more than 2.5 times as heavy as an entire Falcon 9 rocket. In the history of lunar exploration, Apollo’s Lunar Module (LM) – including landing and ascent stages – is the heaviest vehicle to have ever landed on the Moon, weighing a maximum of 5500 kg (12,100 lb) at landing (Apollo 17).

As such, an expendable Starship landing on the Moon with zero propellant for a possible return to Earth would easily break the record for landed mass by a factor of 10-20, while a Starship landing with enough delta V to simply return to lunar orbit – let alone land back on Earth – could easily up that to 30-50x.
Aside from the mass of Starship, there is also the question of how to gently land the spacecraft in the first place. Lunar gravity is roughly 1/6th of Earth’s, meaning that, say, 200 tons (i.e. Raptor’s thrust) would equate to more than 1200 tons of effective thrust on the Moon, a more than 10:1 thrust-to-weight ratio. For reference, the Apollo Lunar Module descent stage was powered by an engine with ~10,000 lbf (4.5 tons) of thrust that could throttle as low as ~1000 lbf (0.45 tons), meaning that even in lunar gravity conditions, the LM could have a thrust-to-weight ratio less than 1. For the purpose of safely landing on the Moon and ensuring a gentle landing, that is an extremely desirable thing to have.

Much like Falcon 9’s upper stage features cold-gas nitrogen thrusters to settle its propellant before MVac ignition, Starship will likely need a similar system, and it’s possible that that system could be used to gently land Starship and tweak its velocity in the final stages of a Moon landing. This study will likely be used in part to figure out what exactly the optimal method of landing Starship is.
How to Refuel Your Starship
Finally, SpaceX’s second NASA SAA focuses on developing the immature technology of in-orbit propellant transfer, an absolute necessity for Starship to simultaneously be fully reusable and capable of landing significant payloads on other planets (or moons). Ever since SpaceX CEO Elon Musk first revealed the company’s Mars-bound launch vehicle in 2016, it has incorporated in-orbit refueling as a foundational feature.


Due to the additions required for full reusability, Starship will essentially need to be launched into Earth orbit and then quickly refueled anywhere from 1 to 10+ times depending on the ultimate destination and the mass of the cargo being delivered. This is not to say that Starship will be useless without refueling – according to SpaceX VP of Sales Jonathan Hofeller, Starship will be capable of launching more than 100 tons (220,000 lb) to low Earth orbit and 20 tons (44,000 lb) to geostationary transfer orbit (GTO), more than enough to satisfy every commercial demand currently in existence.
However, with one or several refueling missions, Starship should be able to turn 100 tons to LEO into 100 tons to the surface of Mars or dozens of tons to the surface of the Moon. Put simply, with reliable and fast refueling, Starship goes from being a major step forward in reusable spaceflight to the key to the solar system and to radically affordable deep spaceflight.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla China’s domestic sales fell 4.8% in 2025, but it’s not doom and gloom
Despite the full-year dip, Tesla finished the year with record domestic sales in December.
Tesla posted 625,698 retail vehicle sales in China in 2025, marking a 4.8% year-on-year decline as the EV maker navigated an increasingly competitive EV market and a major production transition for its best-selling vehicle.
Despite the full-year dip, Tesla finished the year with record domestic sales in December.
Retail sales slip amid Model Y transition
Tesla’s 2025 retail sales in China were down from 657,102 units in 2024, when the company ranked third in the country’s new energy vehicle (NEV) market with a 6.0% share. In 2025, Tesla’s share slipped to 4.9%, placing it fifth overall, as noted in a CNEV Post report.
Part of the decline seemed tied to operational disruptions early in the year. Tesla implemented a changeover to the new Tesla Model Y in the first quarter of 2025, which required temporary production pauses at Giga Shanghai. That downtime reduced vehicle availability early during the year, weighing on the company’s retail volumes in China and in areas supplied by Giga Shanghai’s exports.
China remained one of Tesla’s largest markets, accounting for 38.24% of its global deliveries of 1.64 million vehicles in 2025. However, the company also saw exports from Giga Shanghai fall to 226,034 units, down nearly 13% year-on-year. It remains to be seen how much of this could be attributed to the Model Y changeover and how much could be attributed to other factors.
Strong December 2025 finish
While the full-year picture showed some contraction, Tesla closed 2025 on a high note. According to data from the China Passenger Car Association (CPCA), Tesla China delivered a record 93,843 vehicles domestically in China in December, its highest monthly total ever. That figure was up 13.2% from a year earlier and 28.3% higher than November.
The surge was driven in part by Tesla prioritizing domestic deliveries late in the year, allowing buyers to lock in favorable purchase tax policies. In December alone, Tesla captured 7.0% of China’s NEV market and a notable 12.0% share of the country’s battery-electric segment.
On a wholesale basis, Tesla China sold 851,732 vehicles in 2025, down 7.1% year-on-year. From this number, 97,171 were from December 2025 alone. Tesla Model 3 wholesale figures reached 312,738 units, a year-over-year decrease of 13.12%. The Tesla Model Y’s wholesale figures for 2025 were 538,994 units, down 3.18% year-over-year.
News
Tesla Robovan’s likely first real-world use teased by Boring Company President
As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events.
The Boring Company President Steve Davis has shared the most likely first real-world use for Tesla’s Robovan.
As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events.
Tesla Robovan for high-demand events
During a feature with the Las Vegas Review-Journal, Boring Company President Steve Davis stated that the Tesla Robovan will be used in Sin City once the Vegas Loop expands across the Strip and downtown and the fleet grows to about 1,200 Teslas.
At that scale, Robovans would primarily be deployed during predictable surges, such as game days and large shows, when many riders are traveling to the same destination at the same time.
“The second you have four (passengers) and you have to start stopping, the best thing you can do is put your smallest vehicle in, which is a car. But if you know people are going to the stadium because of a game, you’ll know an hour before, two hours before, that a lot of people are going to a game or a Sphere show, if you are smart about it, that’s when you put a high occupancy vehicle in, that’s when you put the Robovan in,” Davis said.

Vegas Loop expansion
Steve Davis’s Robovan comment comes amid The Boring Company’s efforts to expand the Vegas Loop’s airport service. Phase 1 of rides to Harry Reid International Airport began last month, allowing passengers to travel from existing Loop stations such as Resorts World, Encore, Westgate, and the Las Vegas Convention Center.
Phase 2 will add a 2.2-mile dual-direction tunnel from Westgate to Paradise Road. That section is expected to open within months and will allow speeds of up to 60 mph on parts of the route, while expanding the fleet to around 160 vehicles.
Future phases are expected to extend tunnels closer to airport terminals and add multiple stations along University Center Drive. At this point, the system’s fleet is expected to grow close to 300 Teslas. The final phase, an underground airport station, was described by Davis as the system’s “holy grail.” This, however, has no definite timeframe as of yet.
News
Tesla seeks engineer to make its iOS Robotaxi app feel “magical”
It appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.
Tesla is hiring an iOS Engineer for its Robotaxi app team, with the job posting emphasizing the creation of polished experiences that make the service not just functional, but “magical.”
Needless to say, it appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.
Robotaxi App features
As observed by Tesla community members, Tesla has gone live with a job listing for an iOS Engineer for its Robotaxi App. The job listing mentions the development of a “core mobile experience that enables customers to summon, track, and interact with a driverless vehicle. From requesting a ride to enabling frictionless entry, from trip planning to real-time vehicle status and media control.”
Interestingly enough, the job listing also mentioned the creation of polished experiences that make the Robotaxi more than just functional. “You will take full ownership of features—from architecture design to robust implementation—delivering delightful and polished experiences that make Robotaxi not just functional, but magical,” Tesla noted in its job listing.
Apple’s “magical” marketing
Tesla’s use of the word “magical” when referring to the Robotaxi app mirrors the marketing used by Apple for some of its key products. Apple typically uses the word when referring to products or solutions that transform complex technology into something that feels effortless, simple, and natural to daily life. Products such as the AirPods’ seamless pairing with the iPhone and FaceID’s complex yet simple-to-use security system have received Apple’s “magical” branding.
With this in mind, Tesla seems intent on developing a Robotaxi app that is sophisticated, but still very easy to use. Tesla already has extensive experience in this area, with the Tesla App consistently being hailed by users as one of the best in its segment. If Tesla succeeds in making the Robotaxi app worthy of its “magical” branding, then it wouldn’t be a surprise if the service sees rapid adoption even among mainstream consumers.