Connect with us

News

SpaceX Starship nails ‘flip’ maneuver in explosive landing video

SpaceX has published footage of Starship's first spectacular 'flip' maneuver, showing the rocket's final moments - both good and less so. (SpaceX)

Published

on

Update: SpaceX has published a video taken near the launch pad of Starship nailing an exotic ‘flip’ maneuver shortly before a hard landing destroyed the rocket.

Both the company, test directors, and CEO Elon Musk have all made it abundantly clear that despite the explosive end, Starship SN8’s maiden flight was a spectacular success, proving that the rocket is capable of performing several previously-unproven maneuvers and surviving the associated stresses. Notably, according to tweets posted by Musk not long after, Starship SN8 performed almost perfectly, failing a soft landing (already proven by SN5 and SN6) solely because of low pressure in the rocket’s secondary ‘header’ fuel tank.

Two of SN8’s three Raptors burn to slow the Starship down. (SpaceX)

For unknown reasons, that tank or its associated plumbing were unable to maintain the pressure needed to feed Raptor with enough propellant, resulting in fuel starvation mid-burn. A lack of fuel and surplus of oxygen effectively turned the landing engine into a giant oxygen torch, melting the copper walls of its combustion chamber (hence the green plume). Had the header tank maintained the correct pressure, SN8 would have very likely landed intact (or at least had a much softer landing).

In simpler terms, it seems that Raptor isn’t to blame for Starship SN8’s failed landing and fixing a pressurization problem will be dramatically faster and easier than rectifying a rocket engine design flaw.

SN8’s Raptor plume turns an ominous green as fuel starvation turns the engine into a copper-melting oxygen torch. (SpaceX)

In perhaps the most spectacular aerospace demonstration since Falcon Heavy’s 2018 debut, SpaceX’s first full-size Starship prototype came within a hair’s breadth of sticking the landing after an otherwise successful ~12.5 km (7.8 mi) launch debut.

To quote SpaceX’s test director, heard live on the company’s official webcast moments after Starship serial number 8 (SN8) exploded on impact, “Incredible work, team!” For most, praise shortly after a rocket explosion could easily feel nonsensical, but in the context of SpaceX’s iterative approach to development, a Starship prototype failing just moments before the end of a multi-minute test can be considered a spectacular success.

Chock full of surprises, Starship SN8 ignited its three Raptor engines for the third time and lifted off at 4:45 pm CST (UTC-6) on the program’s high-altitude launch debut.

Advertisement
-->
Starship’s first multi-engine liftoff. (Richard Angle)

About 100 seconds after liftoff, already representing the longest-known ignition of one – let alone three – Raptor engines, one of those three engines appeared to shut down, causing the two remaining engines to gimbal wildly in an effort to retain control. Another two minutes after that, one of those Raptors also shut down, leaving one engine active. That one engine continued to burn for another minute and a half, producing just enough thrust to more or less maintain Starship SN8’s altitude at apogee while performing a bizarre horizontal slide maneuver.

Liftoff. (Richard Angle)
Two engines burning. (Richard Angle)
One engine burning. (Richard Angle)

Finally, at a bit less than five minutes after liftoff, Starship cut off all Raptor engines and began falling back to earth. Looking spectacularly similar to fan-made renders and CGI videos of the highly-anticipated ‘skydiver’ or ‘belly-flop’ maneuver, Starship – belly down – spent around two minutes in a rock-solid freefall, using four large flaps to maintain stability.

Freefall, near apogee. (Richard Angle)
Moments before an aggressive flip maneuver. (Richard Angle)
Fully sideways, SN8 ignites one Raptor to kick into a 90-degree flip maneuver. (Richard Angle)

Around 4:52 pm, Starship SN8 performed exactly as expected, igniting one – and then two – Raptor engines while fully parallel to the ground to complete an aggressive 90-degree flip, transitioning into vertical flight for an attempted landing. Unfortunately, although it’s difficult to judge what was intentional and what was not, things began to go wrong after that point -visible in the form of one of the two reignited Raptors flashing green before shutting down.

At the same time, the plume of the lone remaining engine flashed an electric green, quite literally consuming its copper-rich internals in an unsuccessful attempt to slow Starship down. According to SpaceX CEO Elon Musk, Raptor performed “great” throughout the launch and landing attempt, with the bright-green plume likely explained by extremely oxygen-rich combustion caused by low “fuel header tank pressure.”

The green flash of death. (Richard Angle)
?
RIP SN8. (Richard Angle)
The wreckage of Starship SN8. As SpaceX succinctly notes, SN9 is up next!

Regardless of the specific cause, Starship SN8 smashed into the ground around 10-20 seconds early, traveling about 30 m/s (~70 mph) too fast. To be clear, in SpaceX’s eyes, the test – primarily focused on demonstrating multi-engine ascent, freefall stability, header tank handover, engine reignition, and a flip-over maneuver – was a spectacular success, completing almost every single objective and seemingly doing so without any major issues.

Clocking in at an incredible (and unexpected) ~400 seconds (~6.5 minutes) from liftoff to explosion, it’s difficult to exaggerate the sheer quantity of invaluable data SpaceX has likely gathered from SN8’s sacrifice. Thanks to SN8’s primarily successful debut, SpaceX’s Starship test and launch facilities (minus the rocket’s remains on the landing zone) appear to be almost completely unharmed, likely requiring only minor repairs and refurbishment. Further, Starship SN9 is effectively complete and patiently waiting a few miles down the road, ready to roll to the launch pad almost as soon as SpaceX has understood the cause of SN8’s hard landing.

Stay tuned for more analysis, photos, and videos as the dust settles.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading