News
SpaceX Starship wraps up nosecone ‘cryo proof’ and first of several Raptor static fires
SpaceX has successfully ‘cryoproofed’ the first fully-assembled Starship prototype’s nose-based propellant tank and used that same tank to fire up a Raptor engine, crossing off one of the last major tests before the rocket’s 15-kilometer (~9.5 mile) launch debut.
On November 4th, after a few false-starts, Starship Serial Number 8 (SN8) kicked off its first round of testing after becoming the first prototype to have a nose section permanently installed. On that Wednesday evening, SpaceX most likely put the rocket through a partial cryogenic proof test explicitly focused on SN8’s new nosecone and a small secondary propellant tank situated in its tip. Designed to act as a secondary reservoir for the relatively small amount of propellant Starships need to land, SN8’s two header tanks were likely loaded with cryogenic liquid nitrogen – a safe, nonreactive stand-in for liquid oxygen and methane.
Having proven that Starship SN8’s newly-installed liquid oxygen header tank and associated plumbing is capable of loading, managing, and offloading dozens of tons of cryogenic fluid while navigating a 40-meter-tall (~130 ft) vertical pipe, SpaceX was ready to move onto the next step: a wet dress rehearsal (WDR) and Raptor static fire.
While SpaceX has technically completed eight successful Raptor static fires on four separate prototypes, including the first three-Raptor static fire ever attempted with Starship SN8, the company has never attempted a static fire while solely drawing propellant from header (landing) tanks. All but essential for Starships to be able to reliably reignite their Raptor engines in flight and keep cryogenic landing propellant liquid for hours, days, weeks, and even months, much smaller header tanks make it easier to keep propellant highly pressurized and in the right place to supply Raptors.
After several days of test windows come and gone and an aborted attempt on November 9th, Starship SN8 finally ignited one of its three Raptor engines, feeding the engine with liquid methane and oxygen stored in two separate header tanks. Oddly, a second or two after startup and ignition, Raptor’s usual exhaust plume was joined by a burst of shiny firework-like debris. A relatively normal five seconds later, the Raptor cut off, though the engine appeared to remain partially on fire for another ten or so seconds – also somewhat unusual.
Ultimately, the observed anomaly could be as simple as debris accidentally left in the vicinity of Raptor’s plume or, while less likely, concrete erosion. There’s also a chance that it was pieces of Raptor’s complex turbopumps or preburners, although it’s also unlikely that the engine would have continued running (as it did) if it had lost that much internal hardware.
(Update: Thankfully, NASASpaceflight.com reporter Michael Baylor says that the cloud of debris observed on November 10th “is not a [Raptor performance] concern,” making pad debris the likely source.)
SpaceX has canceled another static fire window on November 11th, leaving the next opportunity for a second (of three) expected static fire between 9am and 9pm CST (UTC-5) on Thursday, November 13th.
News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.
Elon Musk
Elon Musk’s xAI closes upsized $20B Series E funding round
xAI announced the investment round in a post on its official website.
xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development.
xAI announced the investment round in a post on its official website.
A $20 billion Series E round
As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others.
Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.
As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”
xAI’s core mission
Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.
xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5.
“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote.