Connect with us

News

SpaceX’s first orbital Starship launch “highly likely” in November, says Elon Musk

Ship 24 and Booster 7 have a ways to go but SpaceX CEO Elon Musk is confident they'll be ready for orbit later this year. (SpaceX)

Published

on

CEO Elon Musk says that it’s “highly likely” SpaceX will be ready to attempt its first orbital Starship launch in November 2022, and possibly as early as late October. But many major hurdles remain.

Adding to a welcome burst of insight into SpaceX’s fully-reusable Starship rocket program, Musk took to Twitter on September 21st to provide a bit more specific insight into the company’s next steps towards a crucial orbital launch debut. On September 19th, the CEO revealed that SpaceX would roll the Starship booster (B7) currently assigned to that debut back to the factory for mysterious “robustness upgrades” – an unexpected move right after a seemingly successful and record-breaking static fire test.

Two days later, Musk has indicated that those upgrades might involve fortifying Super Heavy Booster 7’s thrust section to ensure it can survive Raptor engine failures. With 33 Raptor V2 engines powering it and plenty of evidence that those Raptors are far from perfect reliability, the concern is understandable, even if the response is a bit different than SpaceX’s norm.

Prior to the start of preparations for Starship’s orbital launch debut, SpaceX sped through Starship development like it wanted to destroy as many rockets as possible – which, to some extent, it did. Rather than spend 6-12 months fiddling with the same few prototypes without a single launch attempt, SpaceX churned out Starships and test articles and aggressively tested them. A few times, SpaceX pushed a little too hard and made avoidable mistakes, but most of the failures produced large amounts of data that was then used to improve future vehicles.

The holy grail of that project was high-altitude Starship flight testing, which saw SpaceX finish, test, and launch a new Starship five times in six months, and culminated in the first fully successful high-altitude Starship launch and landing in May 2021.

Advertisement
-->

In comparison, SpaceX’s orbital flight test preparations have been almost unrecognizable. While a good amount of progress has been made in the 16 months since SN15’s successful launch and landing, it’s clear that SpaceX has decided against taking significant risks. After spending more than six months slowly finishing and testing Super Heavy Booster 4 and Starship 20, the first orbital-class pair, SpaceX never even attempted a single Booster 4 static fire and unceremoniously retired both prototypes without attempting to fly either.

Without info from Musk or SpaceX, we may never know why SpaceX stood down B4 and S20, or why the company appears to have revised its development approach to be a bit more conservative after clearly demonstrating the efficacy of moving fast and taking big risks. It’s possible that winning a $3 billion contract that places Starship front and center in NASA’s attempt to return astronauts to the Moon has encouraged a more careful approach. SpaceX won that contract in April 2021.

Even in its more cautious third phase, Starship development is still extraordinarily hardware-rich, moving quickly, and uncovering many problems on the ground in lieu of learning from flight tests. But that doesn’t change the fact that the third phase of Starship development (H2 2021 – today) is proceeding more carefully than the first (Q4 2018 to Q4 2019) and second (Q1 2020 – Q2 2021) phases.

Nonetheless, SpaceX appears to finally be getting closer to Starship’s first orbital launch. According to Musk, the company could be ready for the first launch attempt as early as late October, but a November attempt is “highly likely.” He believes that SpaceX will have two pairs of orbital-class Starships and Super Heavy boosters (B7/S24; B8/S25) “ready for orbital flight by then,” potentially enabling a rapid return to flight after the first attempt. Musk is also excited about Super Heavy Booster 9, which has “many design changes” and a thrust section that will fully isolate all 33 Raptors from each other – crucial for preventing the failure of one engine from damaging others.

Meanwhile, as Musk forecasted, Super Heavy Booster 8 rolled to the launch pad on September 19th and will likely be proof tested in the near future while Booster 7 is upgraded back at the factory.

Advertisement
-->

Encouraging as that may be, history has shown that reality – particularly when it involves Starship’s orbital launch debut – can be quite a bit different than the pictures Elon Musk paints. In September 2021, for example, Musk predicted that SpaceX would conduct the first Super Heavy static fire at Starbase’s orbital launch pad later that month. In reality, that crucial test occurred 11 months later (August 9th, 2022) and used an entirely different booster.

This is to say that significant progress has been made in the last few months, but SpaceX has a huge amount of work left, almost all of which lies in uncharted terrain. Starship 24, which completed its first six-engine static fire earlier this month, is currently undergoing strange modifications that seem to imply that the upper stage is not living up to SpaceX’s expectations. It’s unclear if additional testing will be required.

Super Heavy B7 is headed back to the factory for additional work after a successful seven-Raptor static fire. Once it returns to the pad, the sequencing isn’t clear, but SpaceX will need to complete the first full Super Heavy wet dress rehearsal (fully loading the booster with thousands of tons of flammable propellant) and the first full 33-Raptor static fire. It remains to be seen if SpaceX will continue its conservative approach (i.e. testing one, three, and seven engines over six weeks) or jump straight from seven- to 33-engine testing.

It’s also unclear where Ship 24 fits into that picture. SpaceX will eventually need to (or should) conduct a full wet dress rehearsal of the fully stacked Starship and may even want to attempt a 33-engine static fire with that fully-fueled two-stage vehicle to truly test the rocket under the same conditions it will launch under. Will SpaceX fully stack B7 and S24 as soon as the booster returns to the pad, risking a potentially flightworthy Starship during the riskiest Super Heavy tests yet?

Booster 7 set a new Starbase record when it ignited 7 Raptors at once on September 19th. (SpaceX)

SpaceX’s last year of activity suggests that the company will choose caution and conduct wet dress rehearsals and 33-engine static fires before and after stacking, potentially doubling the amount of testing required. One or several more tests will also be required if SpaceX decides to gradually build up to 33 engines, which is the approach that all Booster 7 activity to date suggests SpaceX will take.

Either way, it will be a major challenge for SpaceX to have a fully-stacked Starship ready to launch by the end of November. If any significant problems arise during any of the several unprecedented tests described above, Musk’s predicted schedule will likely become impossible. As a wildcard, the Federal Aviation Administration (FAA) has yet to issue SpaceX a license or experimental permit for orbital Starship launches, either of which is contingent upon dozens of “mitigations.”

Advertisement
-->

This isn’t to say that it’s impossible for an orbital Starship launch attempt to occur in November. But factoring in the many issues Booster 7 and Ship 24 have experienced during much simpler tests, it’s becoming increasingly implausible that SpaceX will be ready to launch the pair before the end of 2022. Stay tuned.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief

“And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.”

Published

on

Credit: NVIDIA

NVIDIA CEO Jensen Huang appeared on the Joe Rogan Experience podcast on Wednesday and commended Tesla CEO Elon Musk for his early belief in what is now the most valuable company in the world.

Huang and Musk are widely regarded as two of the greatest tech entrepreneurs of the modern era, with the two working in conjunction as NVIDIA’s chips are present in Tesla vehicles, particularly utilized for self-driving technology and data collection.

Nvidia CEO Jensen Huang regrets not investing more in Elon Musk’s xAI

Both CEOs defied all odds and created companies from virtually nothing. Musk joined Tesla in the early 2000s before the company had even established any plans to build a vehicle. Jensen created NVIDIA in the booth of a Denny’s restaurant, which has been memorialized with a plaque.

On the JRE episode, Rogan asked about Jensen’s relationship with Elon, to which the NVIDIA CEO said that Musk was there when nobody else was:

“I was lucky because I had known Elon Musk, and I helped him build the first computer for Model 3, the Model S, and when he wanted to start working on an autonomous vehicle. I helped him build the computer that went into the Model S AV system, his full self-driving system. We were basically the FSD computer version 1, and so we were already working together.

And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.

He goes ‘You know what, I have a company that could really use this.’ I said, Wow, my first customer. And he goes, it’s an AI company, and it’s a nonprofit and and we could really use one of these supercomputers. I boxed one up, I drove it up to San Francisco, and I delivered it to the Elon in 2016.”

The first DGX-1 AI supercomputer was delivered personally to Musk when he was with OpenAI, which provided crucial early compute power for AI research, accelerating breakthroughs in machine learning that underpin modern tools like ChatGPT.

Tesla’s Nvidia purchases could reach $4 billion this year: Musk

The long-term alliance between NVIDIA and Tesla has driven over $2 trillion in the company’s market value since 2016.

Continue Reading

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading