Connect with us

News

SpaceX’s orbital Starship launch debut could still happen this year

A senior SpaceX engineer and executive believes that Starship's first orbital launch could still happen by the end of 2020. (SpaceX)

Published

on

Despite the spectacular demise of a full-scale prototype just days ago, a senior SpaceX engineer and executive believes that Starship could still be ready for its first orbital launch attempt before the end of the year.

Even if the first launch attempt fails, that milestone – if realized – would be one of the single biggest upsets in the history of spaceflight, proving that Saturn V-scale orbital-class rockets can likely be built in spartan facilities with common materials for pennies on the dollar. Much like Falcon 1 suffered three launch failures before successfully reaching orbit, there’s a strong chance that Starship’s first shot at orbit will fall short, although each full-up launch failure would likely cost substantially more than the current prototypes being routinely tested to destruction in South Texas.

Most recently, what CEO Elon Musk later described as a “a minor test of a quick disconnect” went wrong in a spectacular fashion, causing a major liquid methane leak that subsequently ignited and created a massive explosion. Although Starship SN4 did technically complete its fifth Raptor engine static fire test just a minute or so prior, the ship and its immediate surroundings were obliterated by the violent explosion, leaving little more than steel shrapnel and the broken husk of a launch mount behind. It’s in this context that one of SpaceX’s most levelheaded, expert executives believes that an orbital launch could still happen this year.

A senior SpaceX engineer and executive believes that Starship’s first orbital launch could still happen by the end of 2020. (NASASpaceflight – bocachicagal)

While Starship SN4’s demise and the continued possibility of the ship’s orbital launch debut occurring less than seven months from now may seem at odds with each other, that’s actually just a side effect of the approach SpaceX has always taken when developing brand new rockets and spacecraft. Following the lead of the scrappy teams that used the exact same methods to design, test, and fly the massive Saturn rockets that took humans to the Moon, SpaceX has always preferred to learn by doing.

Inevitably, testing minimum viable products to their limits will lead to failures, but those failures are actually extremely valuable so long as they are extensively analyzed and learned from. That’s exactly what SpaceX has been doing for the last six or so months with full-scale Starship prototypes: building, testing, failing, and improving in an unending cycle. Built slowly with inferior methods, Starship Mk1 almost immediately during its first pressure test in November 2019. SpaceX took that failure, extracted all the insight it could, and dramatically improved its production methods before completing Starship SN1 barely three months later.

On November 20th, 2019 Starship Mk1 burst during its first major cryogenic pressure test. (NASASpaceflight – bocachicagal)
In January, SpaceX built and tested two ‘test tanks’ to failure. (NASASpaceflight – bocachicagal)
Starship SN01 failed on February 28th because of a faulty ‘thrust puck’, later rectified with a third test tank that became the first to survive pressure testing just 10 days later.(NASASpaceflight – bocachicagal)
Starship SN3 was destroyed by an improper test procedure on April 3rd. (LabPadre)
Starship SN4 marked the most recent failure during SpaceX’s hardware-rich development program.

Prior to SN1, SpaceX built and tested two stout test tanks to failure, ultimately achieving pressures of ~8.5 bar – sufficient for reliable human spaceflight – with the second tank on January 30th, 2020. On February 28th, Starship SN1 was unfortunately destroyed by a faulty ‘thrust puck’ (Raptor engine mount). Just 10 days later, SpaceX successfully tested a third ad-hoc test tank, proving that it had already rectified the engine section design flaw. Hardware isn’t always the only problem, however, and Starship SN3 was destroyed by human operator error during a cryogenic proof test on April 3rd.

Starship SN4 was completed and moved to the launch pad less than a month later and began testing just a few days after that, quickly racking up milestones as it became the first full-scale prototype to pass cryogenic proof testing, perform a wet dress rehearsal (WDR) with real propellant, fire up a Raptor engine, and complete a more ambitious cryogenic pressure test. Prior to the ground systems fuel leak that killed it, SN4 was possibly just days away from attempting the inaugural flight of a full-scale Starship prototype.

Advertisement
-->

With Starship SN4 now steel confetti, Starship SN5 – effectively complete – will likely take over where its predecessor left off, heading to the launch pad within the next week or so before attempting a cryogenic pressure test and Raptor static fire to clear it for flight. Per Koenigsmann, that flight debut could come just a few weeks from now – likely before the end of June if replacement ground equipment can be quickly completed. If Starship SN5 survives that hop debut, it may ultimately be upgraded with a nosecone, flaps, and two additional Raptor engines to perform a dramatic 20 km (~12 mi) flight, capped with a supersonic skydiver-style reentry and landing test.

Once that capability has been successfully demonstrated, Super Heavy development and orbital Starship operation and reentry are the next critical hurdles. If Koenigsmann is correct, it’s safe to say that the first fully heat-shielded Starships and the beginnings of the first one or several Super Heavy booster prototypes will begin to appear in South Texas within the next few months.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading