News
SpaceX’s orbital Starship launch pad tank farm comes to life for the first time
Update: Two days after a bevy of tanker trucks began to arrive at SpaceX’s orbital Starship launch site with load upon load of cryogenic liquid nitrogen, the company’s custom-built tank farm appears to have taken its very first ‘breaths.’
In other words, at least one of seven massive propellant storage tanks – two of which appear to have been fully completed and insulated – began venting. For a tank like SpaceX’s ground support equipment (GSE) tanks, the level of venting observed can only mean one thing: pressure maintenance during operations with cryogenic fluids. As cryofluids are loaded into empty tanks, they inevitably come into contact with warm pipes and tank walls, rapidly warming a portion of the liquid that then boils into gas. Tanks then need to vent that excess gas to avoid bursting.
In the case of SpaceX’s two completed liquid oxygen GSE tanks and a spate of liquid nitrogen (LN2) deliveries this week, it’s clear that the company has begun the process of testing and activating part of its brand new orbital-class Starship tank farm – beginning with much less risky LN2 proof testing. Filling the two finished LOx tanks with LN2 should also serve the dual purpose of flushing and cleaning them of any debris or contaminants, ensuring that it’s safe to fill them with LOx when the time comes.
For the first time, SpaceX appears to have begun delivering large quantities of cryogenic fluids to Starship’s orbital launch pad – still under construction but fast approaching some level of initial operational capability.
Sometime in the morning on September 19th, a semi-truck carrying a cryogenic liquid nitrogen (LN2) transport trailer arrived at SpaceX’s Starbase launch facilities. Normally, that would be a completely mundane, uninteresting event: SpaceX has used and will continue to use liquid nitrogen to safely proof test Starship prototypes and supercool their liquid methane (LCH4) and oxygen (LOx) propellant for the indefinite future. However, up to now, 100% of all Starbase cryogen deliveries have gone to the suborbital launch site, where two “mounts” and a few concrete aprons have supported all Starship and Super Heavy tests and launches to date.
Instead, this particular LN2 tanker headed for Starbase’s first orbital tank farm and began to offload its cryogenic liquid cargo at a number of brand new fill stations specifically designed for the task.
Still well under construction and at least a few weeks or months from total complete, Starship’s orbital launch site tank farm will ultimately be a group of eight massive storage tanks surrounded by thousands of feet of insulated plumbing, industrial pumps, a small army of “cryocoolers,” a blockhouse filled with human-sized valves, and much more. Said tank farm has been under construction for the better part of 2021, beginning with work on its concrete foundation this January.
Nine months later, the orbital tank farm is nearly complete. A power distribution and communications blockhouse has been complete for weeks with virtually all the wiring and cabling needed for the orbital launch mount and tower already in place. Several hundred feet of concrete cable and plumbing conduit have been filled with thousands of feet of wires, cables, and pipes and been sealed and buried. The tank farm blockhouse – where a dozen or so massive valves control the flow of propellant to and from the orbital launch mount and tower – is complete save for some final plumbing.

Finally, seven of eight GSE (ground support equipment) tanks have been installed and partially plumbed. Built in the same factory, six are virtually identical to Starship and Super Heavy tanks and will store LOx (3x), LN2 (2x), LCH4 (2x), and around a million gallons of water. Save for one LCH4 tank, all have been installed at the farm and that last tank (known as GSE8) is nearly complete back at the build site. Additionally, to insulate those seven thin, steel storage tanks, SpaceX has contracted with a water/storage tank company to build seven “cryoshells” and said million-gallon water tank.
The water tank was installed months ago and all seven shells are completed and ready to go as of last month. Only two of those seven cryoshells have been installed – and, rather asymmetrically, both on LOx tanks. SpaceX recently rolled the first LN2 tank cryoshell to the farm and could install it soon but as of now, it will likely be weeks before the orbital tank farm will have sleeved, insulated LOx, LN2, and LCH4 tanks ready for testing.

At the moment, that’s one of the biggest points of uncertainty standing between SpaceX and the ability to test Super Heavy or Starship at the orbital launch site. It’s entirely unclear if uninsulated GSE tanks can support any kind of substantial testing – like, say, the first full Super Heavy static fire test campaign – before their contents effectively boil off. As such, it’s a bit of mystery why SpaceX then had at least three tanker loads of liquid nitrogen – likely more than 70 tons (~150,000 lb) total – delivered to the orbital tank farm on September 19th.
By all appearances the first time that the farm’s actual main tanks have been filled with anything, that liquid nitrogen seems to have been loaded into one or both of the two insulated LOx tanks. There are two or three main explanations. First, SpaceX could simply be testing those more or less completed tanks with their first cryogenic fluids. Those partial ‘cryo proof’ tests would also help clean and flush out the interior of the LOx tanks, removing mundane debris or contamination that could become a major hazard when submerged in a high-density oxidizer. Given that both tanks can easily hold ~1300 tons (~2.9M lb) of liquid nitrogen, 70 tons is more of a tickle than a test, though, so a magnitude more would need to be delivered to perform even a half-decent bare-minimum cryoproof.
The other distinct possibility is that SpaceX plans to temporarily use one or both of the only two finished orbital pad tanks to store liquid nitrogen for Super Heavy Booster 4’s first cryogenic proof test. Either way, SpaceX has test windows scheduled every day this week, beginning with a six-hour window that opens at 5pm CDT today (Sept 20). Stay tuned to find out what exactly SpaceX plans to test and if the orbital tank farm and its first taste of liquid nitrogen are involved!
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.