News
SpaceX CEO Elon Musk's latest Starship photos reveal surprise landing legs [confirmed]
Update: In a Twitter response to Teslarati’s report, Musk confirmed that SpaceX has already installed six telescoping landing legs on the Starship SN3 prototype.
CEO Elon Musk published new photos of a Starship prototype shortly after it was moved to SpaceX’s South Texas launch pad, revealing the surprise inclusion of already-installed landing legs and hinting at the growing maturity of the rocket’s design.
Published on March 30th and likely taken late on March 29th, Musk’s latest Starship photos offer the best look yet at the massive vehicle’s engine section, where Raptor engines may soon be installed for historic static fire and hop test attempts. First captured in photos taken by local photographer and resident Mary (bocachicagal) on March 28th, speculation about what appeared to be six odd legs immediately kicked off on spaceflight forums. Due to limited publicly-available perspectives and the appendages’ locations inside Starship’s cavernous engine section, there was some limited ambiguity as to whether the steel pieces were truly legs or something closer to general structural support.
Thankfully, Musk’s new photos all but confirmed the former theory, revealing a sextet of hinged legs with a curious stubby appearance and what appears to be a rather simple and elegant design. Most importantly, the unexpected presence of landing legs – while likely cheap to implement – suggests that SpaceX is growing increasingly confident in each subsequent Starship prototype, an encouraging sign for imminent static fire and hop test plans.

In fact, SpaceX filed a Notice to Airmen (NOTAM) with the Federal Aviation Administration (FAA) on March 30th — the biggest confirmation yet that the company is seriously working to prepare Starship SN3 for a Raptor engine static fire test as early as April 1st. Backup dates on the 2nd, 3rd, and 4th are included, leaving a decent amount of breathing room for SpaceX’s Texas team to (hopefully) successfully complete the rocket’s proof test in the next few days.
Possibly preceded by a water pressure test to check for leaks and verify general structural integrity, Starship SN3’s proof test will see the rocket’s methane and oxygen tanks fully filled with cryogenic liquid nitrogen. The tank pressure would then be increased to around 6-8 bar (90-115 psi) to ensure that Starship can handle the thermal and pressure stresses it will experience during launches. Given SpaceX’s recent history, including a partially unintentional Starship Mk1 tank failure in November 2019, the intentional destruction of two Starship test tanks in January 2020, and Starship SN1’s unintentional February 2020 failure, success is still far from guaranteed for Starship SN3.


Nevertheless, SpaceX seems more confident in Starship SN3 than it was in Starships Mk1 and SN1 – the only other full-scale prototypes to have reached the testing phase. It’s possible that including leg prototypes were cheap and easy enough to be worth installing regardless of SpaceX’s broader confidence in Starship SN3 as a whole. However, it would still be a clear waste of time and resources to install all six landing legs if the internal consensus was to expect a failure in the early phases of SN3 testing.
SpaceX, in other words, seems to believe that Starship SN3 will pass its imminent tank proof test without any major issues. Additionally, the company must be confident in the outcome of the Starship SN3 Raptor static fire(s) expected to immediately follow any successful proof test. SpaceX has successfully demonstrated Raptor several times on flight hardware with the help of the Starhopper development vehicle, but a full-scale Starship is arguably a different animal.

Regardless, it’s now clearer than ever that SpaceX is confident enough to put a few eggs in the Starship SN3 basket. With landing legs installed, the massive rocket prototype could be ready for a Starhopper-style 150m (500 ft) hop test just a week or so from now. For now, though, Starship SN3 needs to pass a tank proof test, perform a wet dress rehearsal (WDR) with real propellant, and complete one or several Raptor static fires before a flight test will be in its cards. Stay tuned!
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.