Connect with us

News

SpaceX CEO Elon Musk's latest Starship photos reveal surprise landing legs [confirmed]

First spotted by a local resident and photographer, photos from Elon Musk later confirmed that Starship SN3 already has six stubby landing legs installed. (NASASpaceflight - bocachicagal)

Published

on

Update: In a Twitter response to Teslarati’s report, Musk confirmed that SpaceX has already installed six telescoping landing legs on the Starship SN3 prototype.

CEO Elon Musk published new photos of a Starship prototype shortly after it was moved to SpaceX’s South Texas launch pad, revealing the surprise inclusion of already-installed landing legs and hinting at the growing maturity of the rocket’s design.

Published on March 30th and likely taken late on March 29th, Musk’s latest Starship photos offer the best look yet at the massive vehicle’s engine section, where Raptor engines may soon be installed for historic static fire and hop test attempts. First captured in photos taken by local photographer and resident Mary (bocachicagal) on March 28th, speculation about what appeared to be six odd legs immediately kicked off on spaceflight forums. Due to limited publicly-available perspectives and the appendages’ locations inside Starship’s cavernous engine section, there was some limited ambiguity as to whether the steel pieces were truly legs or something closer to general structural support.

Thankfully, Musk’s new photos all but confirmed the former theory, revealing a sextet of hinged legs with a curious stubby appearance and what appears to be a rather simple and elegant design. Most importantly, the unexpected presence of landing legs – while likely cheap to implement – suggests that SpaceX is growing increasingly confident in each subsequent Starship prototype, an encouraging sign for imminent static fire and hop test plans.

Advertisement
Shortly after technicians transported Starship SN3 to the launch pad, SpaceX CEO Elon Musk revealed that landing legs – barely visible here – were already installed on the rocket. (NASASpaceflight – bocachicagal)

In fact, SpaceX filed a Notice to Airmen (NOTAM) with the Federal Aviation Administration (FAA) on March 30th — the biggest confirmation yet that the company is seriously working to prepare Starship SN3 for a Raptor engine static fire test as early as April 1st. Backup dates on the 2nd, 3rd, and 4th are included, leaving a decent amount of breathing room for SpaceX’s Texas team to (hopefully) successfully complete the rocket’s proof test in the next few days.

Possibly preceded by a water pressure test to check for leaks and verify general structural integrity, Starship SN3’s proof test will see the rocket’s methane and oxygen tanks fully filled with cryogenic liquid nitrogen. The tank pressure would then be increased to around 6-8 bar (90-115 psi) to ensure that Starship can handle the thermal and pressure stresses it will experience during launches. Given SpaceX’s recent history, including a partially unintentional Starship Mk1 tank failure in November 2019, the intentional destruction of two Starship test tanks in January 2020, and Starship SN1’s unintentional February 2020 failure, success is still far from guaranteed for Starship SN3.

Starship SN3’s legs and engine section are pictured on March 28th as technicians lift it onto SpaceX’s Boca Chica, Texas launch mount. (NASASpaceflight – bocachicagal)
SpaceX CEO Elon Musk’s March 30th photos captured four of Starship SN3’s six surprise landing legs, visible as the shiny, squarish appendages in the right-hand image. (Elon Musk/SpaceX)

Nevertheless, SpaceX seems more confident in Starship SN3 than it was in Starships Mk1 and SN1 – the only other full-scale prototypes to have reached the testing phase. It’s possible that including leg prototypes were cheap and easy enough to be worth installing regardless of SpaceX’s broader confidence in Starship SN3 as a whole. However, it would still be a clear waste of time and resources to install all six landing legs if the internal consensus was to expect a failure in the early phases of SN3 testing.

SpaceX, in other words, seems to believe that Starship SN3 will pass its imminent tank proof test without any major issues. Additionally, the company must be confident in the outcome of the Starship SN3 Raptor static fire(s) expected to immediately follow any successful proof test. SpaceX has successfully demonstrated Raptor several times on flight hardware with the help of the Starhopper development vehicle, but a full-scale Starship is arguably a different animal.

SpaceX is just a day or so away from Starship SN3’s critical tank proof test. (NASASpaceflight – bocachicagal)

Regardless, it’s now clearer than ever that SpaceX is confident enough to put a few eggs in the Starship SN3 basket. With landing legs installed, the massive rocket prototype could be ready for a Starhopper-style 150m (500 ft) hop test just a week or so from now. For now, though, Starship SN3 needs to pass a tank proof test, perform a wet dress rehearsal (WDR) with real propellant, and complete one or several Raptor static fires before a flight test will be in its cards. Stay tuned!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading