Connect with us

News

SpaceX reveals Starship “marine recovery” plans in new job postings

Super Heavy on YOUR drone ship? It's more likely than you think! (Richard Angle/Teslarati/SpaceX)

Published

on

In a series of new job postings, SpaceX has hinted at an unexpected desire to develop “marine recovery systems for the Starship program.”

Since SpaceX first began bending metal for its steel Starship development program in late 2018, CEO Elon Musk, executives, and the company itself have long maintained that both Super Heavy boosters and Starship upper stages would perform what are known as return-to-launch-site (RTLS) landings. It’s no longer clear if those long-stated plans are set in stone.

Oddly, despite repeatedly revealing plans to develop “marine recovery” assets for Starship, SpaceX’s recent “marine engineer” and “naval architect” job postings never specifically mentioned the company’s well-established plans to convert retired oil rigs into vast floating Starship launch sites. Weighing several thousand tons and absolutely dwarfing the football-field-sized drone ships SpaceX recovers Falcon boosters with, it goes without saying that towing an entire oil rig hundreds of miles to and from port is not an efficient or economical solution for rocket recovery. It would also make very little sense for SpaceX to hire a dedicated naval architect without once mentioning that they’d be working on something as all-encompassing as the world’s largest floating launch pad.

That leaves three obvious explanations for the mentions. First, it might be possible that SpaceX is merely preparing for the potential recovery of debris or intact, floating ships or boosters after intentionally expending them on early orbital Starship test flights. Second, SpaceX might have plans to strip an oil rig or two – without fully converting them into launch pads – and then use those rigs as landing platforms designed to remain at sea indefinitely. Those platforms might then transfer landed ships or boosters to smaller support ships tasked with returning them to dry land. Third and arguably most likely, SpaceX might be exploring the possible benefits of landing Super Heavy boosters at sea.

Advertisement

Through its Falcon rockets, SpaceX has slowly but surely refined and perfected the recovery and reuse of orbital-class rocket boosters – 24 (out of 103) of which occurred back on land. Rather than coasting 500-1000 kilometers (300-600+ mi) downrange after stage separation and landing on a drone ship at sea, those 24 boosters flipped around, canceled out their substantial velocities, and boosted themselves a few hundred kilometers back to the Florida or California coast, where they finally touched down on basic concrete pads.

Unsurprisingly, canceling out around 1.5 kilometers per second of downrange velocity (equivalent to Mach ~4.5) and fully reversing that velocity back towards the launch site is an expensive maneuver, costing quite a lot of propellant. For example, the nominal 25-second reentry burn performed by almost all Falcon boosters likely costs about 20 tons (~40,000 lb) of propellant. The average ~35-second single-engine landing burn used by all Falcon boosters likely costs about 10 tons (~22,000 lb) of propellant. Normally, that’s all that’s needed for a drone ship booster landing.

For RTLS landings, Falcon boosters must also perform a large ~40-second boostback burn with three Merlin 1D engines, likely costing an extra 25-35 tons (55,000-80,000 lb) of propellant. In other words, an RTLS landing generally ends up costing at least twice as much propellant as a drone ship landing. Using the general rocketry rule of thumb that every 7 kilograms of booster mass reduces payload to orbit by 1 kilogram and assuming that each reusable Falcon booster requires about 3 tons of recovery-specific hardware (mostly legs and grid fins) a drone ship landing might reduce Falcon 9’s payload to low Earth orbit (LEO) by ~5 tons (from 22 tons to 17 tons). The extra propellant needed for an RTLS landing might reduce it by another 4-5 tons to 13 tons.

Likely less than coincidentally, a Falcon 9 with drone ship booster recovery has never launched more than ~16 tons to LEO. While SpaceX hasn’t provided NASA’s ELVPerf calculator with data for orbits lower than 400 kilometers (~250 mi), it generally agrees, indicating that Falcon 9 is capable of launching about 12t with an RTLS landing and 16t with a drone ship landing.

Advertisement

This is all to say that landing reusable boosters at sea will likely always be substantially more efficient. The reason that SpaceX has always held that Starship’s Super Heavy boosters will avoid maritime recovery is that landing and recovering giant rocket boosters at sea is inherently difficult, risky, time-consuming, and expensive. That makes rapid reuse (on the order of multiple times per day or week) almost impossible and inevitably adds the cost of recovery, which could actually be quite significant for a rocket that SpaceX wants to eventually cost just a few million dollars per launch. However, so long as at-sea recovery costs less than a few million dollars, there’s always a chance that certain launch profiles could be drastically simplified – and end up cheaper – by the occasional at-sea booster landing.

If the alternative is a second dedicated launch to partially refuel one Starship, it’s possible that a sea landing could give Starship the performance needed to accomplish the same mission in a single launch, lowering the total cost of launch services. If – like with Falcon 9 – a sea landing could boost Starship’s payload to LEO by a third or more, the regular sea recovery of Super Heavy boosters would also necessarily cut the number of launches SpaceX needs to fill up a Starship Moon lander by a third. Given that SpaceX and NASA have been planning for Starship tanker launches to occur ~12 days apart, recovering boosters at sea becomes even more feasible.

In theory, the Starship launch vehicle CEO Elon Musk has recently described could be capable of launching anywhere from 150 to 200+ tons to low Earth orbit with full reuse and RTLS booster recovery. With so much performance available, it may matter less than it does with Falcon 9 and Falcon Heavy if an RTLS booster landing cuts payload to orbit by a third, a half, or even more. At the end of the day, “just” 100 tons to LEO may be more than enough to satisfy any realistic near-term performance requirements.

But until Starships and Super Heavy boosters are reusable enough to routinely launch multiple times per week (let alone per day) and marginal launch costs have been slashed to single-digit millions of dollars, it’s hard to imagine SpaceX willingly leaving so much performance on the table by forgoing at-sea recovery out of principle alone.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Musk bankers looking to trim xAI debt after SpaceX merger: report

xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. A new financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year.

Published

on

Credit: SpaceX

Elon Musk’s bankers are looking to trim the debt that xAI has taken on over the past few years, following the company’s merger with SpaceX, a new report from Bloomberg says.

xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. Bankers are trying to create some kind of financing plan that would trim “some of the heavy interest costs” that come with the debt.

The financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year. Musk has essentially confirmed that SpaceX would be heading toward an IPO last month.

SpaceX IPO is coming, CEO Elon Musk confirms

The report indicates that Morgan Stanley is expected to take the leading role in any financing plan, citing people familiar with the matter. Morgan Stanley, along with Goldman Sachs, Bank of America, and JPMorgan Chase & Co., are all expected to be in the lineup of banks leading SpaceX’s potential IPO.

Since Musk acquired X, he has also had what Bloomberg says is a “mixed track record with debt markets.” Since purchasing X a few years ago with a $12.5 billion financing package, X pays “tens of millions in interest payments every month.”

That debt is held by Bank of America, Barclays, Mitsubishi, UFJ Financial, BNP Paribas SA, Mizuho, and Société Générale SA.

X merged with xAI last March, which brought the valuation to $45 billion, including the debt.

SpaceX announced the merger with xAI earlier this month, a major move in Musk’s plan to alleviate Earth of necessary data centers and replace them with orbital options that will be lower cost:

“In the long term, space-based AI is obviously the only way to scale. To harness even a millionth of our Sun’s energy would require over a million times more energy than our civilization currently uses! The only logical solution, therefore, is to transport these resource-intensive efforts to a location with vast power and space. I mean, space is called “space” for a reason.”

The merger has many advantages, but one of the most crucial is that it positions the now-merged companies to fund broader goals, fueled by revenue from the Starlink expansion, potential IPO, and AI-driven applications that could accelerate the development of lunar bases.

Continue Reading

News

Tesla pushes Full Self-Driving outright purchasing option back in one market

Tesla announced last month that it would eliminate the ability to purchase the Full Self-Driving software outright, instead opting for a subscription-only program, which will require users to pay monthly.

Published

on

Credit: Tesla

Tesla has pushed the opportunity to purchase the Full Self-Driving suite outright in one market: Australia.

The date remains February 14 in North America, but Tesla has pushed the date back to March 31, 2026, in Australia.

Tesla announced last month that it would eliminate the ability to purchase the Full Self-Driving software outright, instead opting for a subscription-only program, which will require users to pay monthly.

If you have already purchased the suite outright, you will not be required to subscribe once again, but once the outright purchase option is gone, drivers will be required to pay the monthly fee.

The reason for the adjustment is likely due to the short period of time the Full Self-Driving suite has been available in the country. In North America, it has been available for years.

Tesla hits major milestone with Full Self-Driving subscriptions

However, Tesla just launched it just last year in Australia.

Full Self-Driving is currently available in seven countries: the United States, Canada, China, Mexico, Australia, New Zealand, and South Korea.

The company has worked extensively for the past few years to launch the suite in Europe. It has not made it quite yet, but Tesla hopes to get it launched by the end of this year.

In North America, Tesla is only giving customers one more day to buy the suite outright before they will be committed to the subscription-based option for good.

The price is expected to go up as the capabilities improve, but there are no indications as to when Tesla will be doing that, nor what type of offering it plans to roll out for owners.

Continue Reading

Elon Musk

Starlink terminals smuggled into Iran amid protest crackdown: report

Roughly 6,000 units were delivered following January’s unrest.

Published

on

Credit: Starlink/X

The United States quietly moved thousands of Starlink terminals into Iran after authorities imposed internet shutdowns as part of its crackdown on protests, as per information shared by U.S. officials to The Wall Street Journal

Roughly 6,000 units were delivered following January’s unrest, marking the first known instance of Washington directly supplying the satellite systems inside the country.

Iran’s government significantly restricted online access as demonstrations spread across the country earlier this year. In response, the U.S. purchased nearly 7,000 Starlink terminals in recent months, with most acquisitions occurring in January. Officials stated that funding was reallocated from other internet access initiatives to support the satellite deployment.

President Donald Trump was aware of the effort, though it remains unclear whether he personally authorized it. The White House has not issued a comment about the matter publicly.

Possession of a Starlink terminal is illegal under Iranian law and can result in significant prison time. Despite this, the WSJ estimated that tens of thousands of residents still rely on the satellite service to bypass state controls. Authorities have reportedly conducted inspections of private homes and rooftops to locate unauthorized equipment.

Advertisement

Earlier this year, Trump and Elon Musk discussed maintaining Starlink access for Iranians during the unrest. Tehran has repeatedly accused Washington of encouraging dissent, though U.S. officials have mostly denied the allegations.

The decision to prioritize Starlink sparked internal debate within U.S. agencies. Some officials argued that shifting resources away from Virtual Private Networks (VPNs) could weaken broader internet access efforts. VPNs had previously played a major role in keeping Iranians connected during earlier protest waves, though VPNs are not effective when the actual internet gets cut.

According to State Department figures, about 30 million Iranians used U.S.-funded VPN services during demonstrations in 2022. During a near-total blackout in June 2025, roughly one-fifth of users were still able to access limited connectivity through VPN tools.

Critics have argued that satellite access without VPN protection may expose users to geolocation risks. After funds were redirected to acquire Starlink equipment, support reportedly lapsed for two of five VPN providers operating in Iran.

Advertisement

A State Department official has stated that the U.S. continues to back multiple technologies,  including VPNs alongside Starlink, to sustain people’s internet access amidst the government’s shutdowns.

Continue Reading