News
SpaceX reveals Starship “marine recovery” plans in new job postings
In a series of new job postings, SpaceX has hinted at an unexpected desire to develop “marine recovery systems for the Starship program.”
Since SpaceX first began bending metal for its steel Starship development program in late 2018, CEO Elon Musk, executives, and the company itself have long maintained that both Super Heavy boosters and Starship upper stages would perform what are known as return-to-launch-site (RTLS) landings. It’s no longer clear if those long-stated plans are set in stone.
Oddly, despite repeatedly revealing plans to develop “marine recovery” assets for Starship, SpaceX’s recent “marine engineer” and “naval architect” job postings never specifically mentioned the company’s well-established plans to convert retired oil rigs into vast floating Starship launch sites. Weighing several thousand tons and absolutely dwarfing the football-field-sized drone ships SpaceX recovers Falcon boosters with, it goes without saying that towing an entire oil rig hundreds of miles to and from port is not an efficient or economical solution for rocket recovery. It would also make very little sense for SpaceX to hire a dedicated naval architect without once mentioning that they’d be working on something as all-encompassing as the world’s largest floating launch pad.
That leaves three obvious explanations for the mentions. First, it might be possible that SpaceX is merely preparing for the potential recovery of debris or intact, floating ships or boosters after intentionally expending them on early orbital Starship test flights. Second, SpaceX might have plans to strip an oil rig or two – without fully converting them into launch pads – and then use those rigs as landing platforms designed to remain at sea indefinitely. Those platforms might then transfer landed ships or boosters to smaller support ships tasked with returning them to dry land. Third and arguably most likely, SpaceX might be exploring the possible benefits of landing Super Heavy boosters at sea.
Through its Falcon rockets, SpaceX has slowly but surely refined and perfected the recovery and reuse of orbital-class rocket boosters – 24 (out of 103) of which occurred back on land. Rather than coasting 500-1000 kilometers (300-600+ mi) downrange after stage separation and landing on a drone ship at sea, those 24 boosters flipped around, canceled out their substantial velocities, and boosted themselves a few hundred kilometers back to the Florida or California coast, where they finally touched down on basic concrete pads.
Unsurprisingly, canceling out around 1.5 kilometers per second of downrange velocity (equivalent to Mach ~4.5) and fully reversing that velocity back towards the launch site is an expensive maneuver, costing quite a lot of propellant. For example, the nominal 25-second reentry burn performed by almost all Falcon boosters likely costs about 20 tons (~40,000 lb) of propellant. The average ~35-second single-engine landing burn used by all Falcon boosters likely costs about 10 tons (~22,000 lb) of propellant. Normally, that’s all that’s needed for a drone ship booster landing.
For RTLS landings, Falcon boosters must also perform a large ~40-second boostback burn with three Merlin 1D engines, likely costing an extra 25-35 tons (55,000-80,000 lb) of propellant. In other words, an RTLS landing generally ends up costing at least twice as much propellant as a drone ship landing. Using the general rocketry rule of thumb that every 7 kilograms of booster mass reduces payload to orbit by 1 kilogram and assuming that each reusable Falcon booster requires about 3 tons of recovery-specific hardware (mostly legs and grid fins) a drone ship landing might reduce Falcon 9’s payload to low Earth orbit (LEO) by ~5 tons (from 22 tons to 17 tons). The extra propellant needed for an RTLS landing might reduce it by another 4-5 tons to 13 tons.
Likely less than coincidentally, a Falcon 9 with drone ship booster recovery has never launched more than ~16 tons to LEO. While SpaceX hasn’t provided NASA’s ELVPerf calculator with data for orbits lower than 400 kilometers (~250 mi), it generally agrees, indicating that Falcon 9 is capable of launching about 12t with an RTLS landing and 16t with a drone ship landing.
This is all to say that landing reusable boosters at sea will likely always be substantially more efficient. The reason that SpaceX has always held that Starship’s Super Heavy boosters will avoid maritime recovery is that landing and recovering giant rocket boosters at sea is inherently difficult, risky, time-consuming, and expensive. That makes rapid reuse (on the order of multiple times per day or week) almost impossible and inevitably adds the cost of recovery, which could actually be quite significant for a rocket that SpaceX wants to eventually cost just a few million dollars per launch. However, so long as at-sea recovery costs less than a few million dollars, there’s always a chance that certain launch profiles could be drastically simplified – and end up cheaper – by the occasional at-sea booster landing.
If the alternative is a second dedicated launch to partially refuel one Starship, it’s possible that a sea landing could give Starship the performance needed to accomplish the same mission in a single launch, lowering the total cost of launch services. If – like with Falcon 9 – a sea landing could boost Starship’s payload to LEO by a third or more, the regular sea recovery of Super Heavy boosters would also necessarily cut the number of launches SpaceX needs to fill up a Starship Moon lander by a third. Given that SpaceX and NASA have been planning for Starship tanker launches to occur ~12 days apart, recovering boosters at sea becomes even more feasible.
In theory, the Starship launch vehicle CEO Elon Musk has recently described could be capable of launching anywhere from 150 to 200+ tons to low Earth orbit with full reuse and RTLS booster recovery. With so much performance available, it may matter less than it does with Falcon 9 and Falcon Heavy if an RTLS booster landing cuts payload to orbit by a third, a half, or even more. At the end of the day, “just” 100 tons to LEO may be more than enough to satisfy any realistic near-term performance requirements.
But until Starships and Super Heavy boosters are reusable enough to routinely launch multiple times per week (let alone per day) and marginal launch costs have been slashed to single-digit millions of dollars, it’s hard to imagine SpaceX willingly leaving so much performance on the table by forgoing at-sea recovery out of principle alone.
News
Rivian unveils self-driving chip and autonomy plans to compete with Tesla
Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.
Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.
Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.
CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.
He said:
“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”
At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:
“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”
The Hardware
Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.
It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.
Meet the Rivian Autonomy Processor.
Fast, smart, scalable and purpose-built for autonomous driving and the world of physical AI. Hitting the open road in 2026. pic.twitter.com/0wYXi5WKy7
— Rivian (@Rivian) December 11, 2025
RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.
ACM3 specs include:
- 1600 sparse INT8 TOPS (Trillion Operations Per Second).
- The processing power of 5 billion pixels per second.
- RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
- RAP1 is enabled by an in-house developed AI compiler and platform software
As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”
More Details
Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.
More than any other feature, our owners have asked for more hands-free miles.
With Universal Hands-Free, you can now enjoy hands-free assisted driving on any road with clearly defined lanes. That’s roughly 3.5 million miles in the U.S. and Canada.
Look for it in our next… pic.twitter.com/ZFhwVzvt6b
— Rivian (@Rivian) December 11, 2025
Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.
News
Tesla partners with Lemonade for new insurance program
Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”
Tesla owners in California, Oregon, and Arizona can now use Lemonade Insurance, the firm that recently said it could cover Full Self-Driving miles for “almost free.”
Lemonade, which offered the new service through its app, has three distinct advantages, it says:
- Direct Connection for no telematics device needed
- Better customer service
- Smarter pricing
The company is known for offering unique, fee-based insurance rates through AI, and instead of keeping unclaimed premiums, it offers coverage through a flat free upfront. The leftover funds are donated to charities by its policyholders.
On Thursday, it announced that cars in three states would be able to be connected directly to the car through its smartphone app, enabling easier access to insurance factors through telematics:
Lemonade customers who own @Tesla vehicles in California, Oregon, and Arizona can now connect their cars directly to the Lemonade app! ⚡🚘
Direct connection = no telematics device needed 📵
Better customer experience 💃
Smarter pricing with Lemonade 🧠This is a game-changer… pic.twitter.com/jbabxZWT4t
— Lemonade (@Lemonade_Inc) December 11, 2025
Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”
The strategy would be one of the most unique, as it would provide Tesla drivers with stable, accurate, and consistent insurance rates, while also incentivizing owners to utilize Full Self-Driving for their travel miles.
Tesla Full Self-Driving gets an offer to be insured for ‘almost free’
This would make FSD more cost-effective for owners and contribute to the company’s data collection efforts.
Data also backs Tesla Full Self-Driving’s advantages as a safety net for drivers. Recent figures indicate it was nine times less likely to be in an accident compared to the national average, registering an accident every 6.36 million miles. The NHTSA says a crash occurs approximately every 702,000 miles.
Tesla also offers its own in-house insurance program, which is currently offered in twelve states so far. The company is attempting to enter more areas of the U.S., with recent filings indicating the company wants to enter Florida and offer insurance to drivers in that state.
News
Tesla Model Y gets hefty discounts and more in final sales push
Tesla Model Y configurations are getting hefty discounts and more benefits as the company is in the phase of its final sales push for the year.
Tesla is offering up to $1,500 off new Model Y Standard trims that are available in inventory in the United States. Additionally, Tesla is giving up to $2,000 off the Premium trims of the Model Y. There is also one free upgrade included, such as a paint color or interior color, at no additional charge.
NEWS: Tesla is now offering discounts of up to $1,500 off new Model Y Standard vehicles in U.S. inventory. Discounts of up to $2,000 are also being offered on Model Y Premiums.
These discounts are in addition to the one free upgrade you get (such as Diamond Black paint) on… pic.twitter.com/L0RMtjmtK0
— Sawyer Merritt (@SawyerMerritt) December 10, 2025
Tesla is hoping to bolster a relatively strong performance through the first three quarters of the year, with over 1.2 million cars delivered through the first three quarters.
This is about four percent under what the company reported through the same time period last year, as it was about 75,000 vehicles ahead in 2024.
However, Q3 was the company’s best quarterly performance of all time, and it surged because of the loss of the $7,500 EV tax credit, which was eliminated in September. The imminent removal of the credit led to many buyers flocking to Tesla showrooms to take advantage of the discount, which led to a strong quarter for the company.
2024 was the first year in the 2020s when Tesla did not experience a year-over-year delivery growth, as it saw a 1 percent slide from 2023. The previous years saw huge growth, with the biggest coming from 2020 to 2021, when Tesla had an 87 percent delivery growth.
This year, it is expected to be a second consecutive slide, with a drop of potentially 8 percent, if it manages to deliver 1.65 million cars, which is where Grok projects the automaker to end up.
Tesla will likely return to its annual growth rate in the coming years, but the focus is becoming less about delivery figures and more about autonomy, a major contributor to the company’s valuation. As AI continues to become more refined, Tesla will apply these principles to its Full Self-Driving efforts, as well as the Optimus humanoid robot project.
Will Tesla thrive without the EV tax credit? Five reasons why they might
These discounts should help incentivize some buyers to pull the trigger on a vehicle before the year ends. It will also be interesting to see if the adjusted EV tax credit rules, which allowed deliveries to occur after the September 30 cutoff date, along with these discounts, will have a positive impact.