Connect with us

News

SpaceX reveals Starship “marine recovery” plans in new job postings

Super Heavy on YOUR drone ship? It's more likely than you think! (Richard Angle/Teslarati/SpaceX)

Published

on

In a series of new job postings, SpaceX has hinted at an unexpected desire to develop “marine recovery systems for the Starship program.”

Since SpaceX first began bending metal for its steel Starship development program in late 2018, CEO Elon Musk, executives, and the company itself have long maintained that both Super Heavy boosters and Starship upper stages would perform what are known as return-to-launch-site (RTLS) landings. It’s no longer clear if those long-stated plans are set in stone.

Oddly, despite repeatedly revealing plans to develop “marine recovery” assets for Starship, SpaceX’s recent “marine engineer” and “naval architect” job postings never specifically mentioned the company’s well-established plans to convert retired oil rigs into vast floating Starship launch sites. Weighing several thousand tons and absolutely dwarfing the football-field-sized drone ships SpaceX recovers Falcon boosters with, it goes without saying that towing an entire oil rig hundreds of miles to and from port is not an efficient or economical solution for rocket recovery. It would also make very little sense for SpaceX to hire a dedicated naval architect without once mentioning that they’d be working on something as all-encompassing as the world’s largest floating launch pad.

That leaves three obvious explanations for the mentions. First, it might be possible that SpaceX is merely preparing for the potential recovery of debris or intact, floating ships or boosters after intentionally expending them on early orbital Starship test flights. Second, SpaceX might have plans to strip an oil rig or two – without fully converting them into launch pads – and then use those rigs as landing platforms designed to remain at sea indefinitely. Those platforms might then transfer landed ships or boosters to smaller support ships tasked with returning them to dry land. Third and arguably most likely, SpaceX might be exploring the possible benefits of landing Super Heavy boosters at sea.

Advertisement

Through its Falcon rockets, SpaceX has slowly but surely refined and perfected the recovery and reuse of orbital-class rocket boosters – 24 (out of 103) of which occurred back on land. Rather than coasting 500-1000 kilometers (300-600+ mi) downrange after stage separation and landing on a drone ship at sea, those 24 boosters flipped around, canceled out their substantial velocities, and boosted themselves a few hundred kilometers back to the Florida or California coast, where they finally touched down on basic concrete pads.

Unsurprisingly, canceling out around 1.5 kilometers per second of downrange velocity (equivalent to Mach ~4.5) and fully reversing that velocity back towards the launch site is an expensive maneuver, costing quite a lot of propellant. For example, the nominal 25-second reentry burn performed by almost all Falcon boosters likely costs about 20 tons (~40,000 lb) of propellant. The average ~35-second single-engine landing burn used by all Falcon boosters likely costs about 10 tons (~22,000 lb) of propellant. Normally, that’s all that’s needed for a drone ship booster landing.

For RTLS landings, Falcon boosters must also perform a large ~40-second boostback burn with three Merlin 1D engines, likely costing an extra 25-35 tons (55,000-80,000 lb) of propellant. In other words, an RTLS landing generally ends up costing at least twice as much propellant as a drone ship landing. Using the general rocketry rule of thumb that every 7 kilograms of booster mass reduces payload to orbit by 1 kilogram and assuming that each reusable Falcon booster requires about 3 tons of recovery-specific hardware (mostly legs and grid fins) a drone ship landing might reduce Falcon 9’s payload to low Earth orbit (LEO) by ~5 tons (from 22 tons to 17 tons). The extra propellant needed for an RTLS landing might reduce it by another 4-5 tons to 13 tons.

Likely less than coincidentally, a Falcon 9 with drone ship booster recovery has never launched more than ~16 tons to LEO. While SpaceX hasn’t provided NASA’s ELVPerf calculator with data for orbits lower than 400 kilometers (~250 mi), it generally agrees, indicating that Falcon 9 is capable of launching about 12t with an RTLS landing and 16t with a drone ship landing.

Advertisement

This is all to say that landing reusable boosters at sea will likely always be substantially more efficient. The reason that SpaceX has always held that Starship’s Super Heavy boosters will avoid maritime recovery is that landing and recovering giant rocket boosters at sea is inherently difficult, risky, time-consuming, and expensive. That makes rapid reuse (on the order of multiple times per day or week) almost impossible and inevitably adds the cost of recovery, which could actually be quite significant for a rocket that SpaceX wants to eventually cost just a few million dollars per launch. However, so long as at-sea recovery costs less than a few million dollars, there’s always a chance that certain launch profiles could be drastically simplified – and end up cheaper – by the occasional at-sea booster landing.

If the alternative is a second dedicated launch to partially refuel one Starship, it’s possible that a sea landing could give Starship the performance needed to accomplish the same mission in a single launch, lowering the total cost of launch services. If – like with Falcon 9 – a sea landing could boost Starship’s payload to LEO by a third or more, the regular sea recovery of Super Heavy boosters would also necessarily cut the number of launches SpaceX needs to fill up a Starship Moon lander by a third. Given that SpaceX and NASA have been planning for Starship tanker launches to occur ~12 days apart, recovering boosters at sea becomes even more feasible.

In theory, the Starship launch vehicle CEO Elon Musk has recently described could be capable of launching anywhere from 150 to 200+ tons to low Earth orbit with full reuse and RTLS booster recovery. With so much performance available, it may matter less than it does with Falcon 9 and Falcon Heavy if an RTLS booster landing cuts payload to orbit by a third, a half, or even more. At the end of the day, “just” 100 tons to LEO may be more than enough to satisfy any realistic near-term performance requirements.

But until Starships and Super Heavy boosters are reusable enough to routinely launch multiple times per week (let alone per day) and marginal launch costs have been slashed to single-digit millions of dollars, it’s hard to imagine SpaceX willingly leaving so much performance on the table by forgoing at-sea recovery out of principle alone.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla China hires Autopilot Test Engineer amid continued FSD rollout preparations

The role is based in Lingang, the district that houses Gigafactory Shanghai.

Published

on

Credit: Grok Imagine

Tesla is hiring an Autopilot Test Engineer in Shanghai, a move that signals continued groundwork for the validation of Full Self-Driving (FSD) in China. The role is based in Lingang, the district that houses Gigafactory Shanghai and has become a key testing zone for advanced autonomous features.

As observed by Tesla watchers, local authorities in Shanghai’s Nanhui New City within Lingang have previously authorized a fleet of Teslas to run advanced driving tests on public roads. This marked one of the first instances where foreign automakers were permitted to test autonomous driving systems under real traffic conditions in China. 

Tesla’s hiring efforts come amid ongoing groundwork for a full FSD rollout in China. Earlier reporting noted that Tesla China has been actively preparing the regulatory and infrastructure foundation needed for full FSD deployment, even though the company has not yet announced a firm launch date for the feature in the market.

As per recent comments from Tesla China Vice President Grace Tao, the electric vehicle maker has been busy setting up the necessary facilities to support FSD’s full rollout in the country. In a comment to local media, Tao stated that FSD should demonstrate a level of performance that could surpass human drivers once it is fully rolled out. 

Advertisement

“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”

Tesla CEO Elon Musk has been quite bullish about a potential FSD rollout in China. During the 2025 Annual Shareholder Meeting, Musk emphasized that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026. This timeline was reiterated by the CEO during his appearance at the World Economic Forum in Davos.

Advertisement
Continue Reading

Elon Musk

Tesla Model Y outsells all EV rivals in Europe in 2025 despite headwinds

The result highlights the Model Y’s continued strength in the region.

Published

on

tesla-model-y-giga-berlin-delivery
Credit: Tesla

The Tesla Model Y was Europe’s most popular electric car in 2025, leading all EV models by a wide margin despite a year marked by production transition, intensifying competition, and anti-Elon Musk sentiments. 

The result highlights the Model Y’s continued strength in the region even as Volkswagen overtook Tesla as the top-selling EV brand overall.

As per data compiled by JATO Dynamics and reported by Swedish outlet Allt om Elbil, the Tesla Model Y recorded 149,805 registrations across Europe in 2025. That figure placed it comfortably at No. 1 among all electric car models in the region.

The Model Y’s performance in Europe is particularly notable given that registrations declined 28% year-over-year. The dip coincided with Tesla’s Q1 2025 transition to the updated Model Y, a changeover that temporarily affected output and deliveries in several markets. Anti-Elon Musk sentiments also spread across several European countries amidst the CEO’s work with U.S. President Donald Trump.

Advertisement

Even with these disruptions, the Model Y outsold its nearest rival by more than 50,000 units. Second place went to the newly launched Skoda Elroq with 93,870 registrations, followed by the Tesla Model 3 at 85,393 units. The Model 3 also recorded a 24% year-over-year decline. Renault’s new electric Renault 5 placed fourth with 85,101 registrations.

Other top performers included the Volkswagen ID.4, ID.3, and ID.7, along with the BMW iX1 and Kia EV3, many of which posted triple-digit growth from partial-year launches in 2024.

While the Model Y dominated individual model rankings, Volkswagen overtook Tesla as Europe’s top EV brand in 2025. Volkswagen delivered 274,278 electric cars in the region, a 56% increase compared to 2024. Much of that growth was driven by the Volkswagen ID.7. Tesla, by contrast, sold 236,357 electric vehicles in Europe, representing a 27% year-over-year decline.

JATO Dynamics noted that “Tesla’s small and aging model range faces fierce competition in Europe, both from traditional European automakers and a growing number of Chinese competitors.”

Advertisement

Despite intensifying competition and brand-level shifts, however. the Model Y’s commanding lead demonstrates that Tesla’s bestselling crossover remains a dominant force in Europe’s fast-evolving EV landscape.

Continue Reading

News

Starlink gets its latest airline adoptee for stable and reliable internet access

The company said it plans to “rapidly integrate Starlink into its fleet,” and that the first Starlink-equipped aircraft will enter service this Summer.

Published

on

Credit: Southwest Airlines

SpaceX’s Starlink, the satellite internet program launched by Elon Musk’s company, has gotten its latest airline adoptee, offering stable and reliable internet to passengers.

Southwest Airlines announced on Wednesday that it would enable Starlink on its aircraft, a new strategy that will expand to more than 300 planes by the end of the year.

The company said it plans to “rapidly integrate Starlink into its fleet,” and that the first Starlink-equipped aircraft will enter service this Summer.

Tony Roach, Executive Vice President, Chief Customer and Brand Officer for the airline, said:

“Free WiFi has been a huge hit with our Rapid Rewards Members, and we know our Customers expect seamless connectivity across all their devices when they travel. Starlink delivers that at-home experience in the air, giving Customers the ability to stream their favorite shows from any platform, watch live sports, download music, play games, work, and connect with loved ones from takeoff to landing.”

Southwest also said that this is just one of the latest upgrades it is making to provide a more well-rounded experience to its aircraft. In addition to Starlink, it is updating cabin designs, offering more legroom, and installing in-seat power to all passengers.

Southwest became one of several airlines to cross over to Starlink, as reviews for the internet provider have raved about reliability and speed. Over the past year, Hawaiian Airlines, United Airlines, Alaska Airlines, airBaltic, Air France, JSX, Emirates, British Airways, and others have all decided to install Starlink on their planes.

This has been a major move away from unpredictable and commonly unreliable WiFi offerings on planes. Starlink has been more reliable and has provided more stable connections for those using their travel time for leisure or business.

Jason Fritch, VP of Starlink Enterprise Sales at SpaceX, said:

“We’re thrilled to deliver a connectivity experience to Southwest Airlines and its Customers that really is similar, if not better, than what you can experience in your own home. Starlink is the future of connected travel, making every journey faster, smoother, and infinitely more enjoyable.”

Starlink recently crossed a massive milestone of over 10 million subscribers.

Continue Reading