Connect with us

News

SpaceX recaps historic Starship landing in 4K as next ship readies for flight

SpaceX has published an official 4K recap of Starship's first soft (ish) landing. (SpaceX)

Published

on

SpaceX has published a new 4K video recapping Starship’s first intact landing after a high-altitude launch right as the company is preparing the next ship for flight.

On March 3rd, Starship serial number 10 (SN10) briefly became the first prototype to successfully launch to 10 km (6.2 mi), ‘skydive’ back to Earth, flip around, and land in one piece. Put simply, Starship SN10 made it unequivocally clear that the exotic, unproven method of landing selected by SpaceX could be made to work. Unfortunately, while Starship SN10 did land in one piece, the landing was much harder than planned.

Due to some combination of that hard landing and an apparent onboard fire that started in the last ~20 seconds of flight, SpaceX only had around six minutes to contemplate its success before Starship SN10’s propellant tanks were breached, violently depressurizing the rocket and causing a large explosion and fire.

Previously discussed on Teslarati, SpaceX CEO Elon Musk later took to Twitter to offer some educated guesses as to why Starship SN10 exploded.

“Starship SN9 ultimately failed a few seconds earlier than Starship SN8 when one of its Raptor engines failed to ignite, precluding a true flight test of the helium pressurization fix. As it turns out, Musk believes that that very fix may have doomed Starship SN10.

As Starship SN10 forged ahead past the points of failure that killed SN8 and SN9, the SpaceX CEO thinks that one or more of the vehicle’s three Raptor engines began to ingest some of that helium as they drained the methane header tank. As a result, engine thrust fell below expected values, preventing Starship SN10 from fully slowing down for a soft landing. Instead, the Starship hit the ground traveling a solid 25 mph (~10 m/s), obliterating its tiny landing legs and damaging its skirt section.”


Teslarati.com – March 10th, 2021

Advertisement
-->

In other words, the losses of Starships SN8, SN9, and SN10 all share a relatively common point of failure – propulsion reliability. Technically, only Starship SN9’s failure can be blamed specifically on Raptor, one of which failed to ignite during its flip and landing maneuver. SN8 and SN10 both failed because of issues in the complex network of plumbing and pressurization systems responsible for feeding Raptors the right amount of propellant.

For SN8, the ship’s pressurization system failed to provide the necessary fuel head pressure at the last second, starving the Starship’s Raptors. SN10 ironically failed because the quick fix inspired by SN8’s failure – partially replacing a methane pressurant with helium – likely contaminated its methane fuel with helium, effectively watering down Raptor’s performance. While likely frustrating for SpaceX, the failures are still extremely valuable and loss of hardware remains a routine and intentional part of the company’s approach to iterative rocket development.

On the plus side, the FAA has already cleared SpaceX’s next Starship for flight after SN10’s momentary success and subsequent explosion. Spurred by that brief taste of total success, SpaceX wasted no time to prepare that next prototype – Starship SN11 – for flight and rolled the rocket to the launch pad mere days after SN10’s March 3rd flight. That very same day, SpaceX completed ambient pressure testing – a basic verification that Starship SN11 is leak-free.

A few days later, SN11 appeared to pass its first cryogenic proof test, replacing room-temperature gas with cryogenic liquid nitrogen. Three days after that, SpaceX attempted to put the Starship through its first triple-Raptor static fire test but appeared to suffer an abort milliseconds after a partial ignition of one or two of its three engines. Starship SN11 briefly caught fire and burned for at least 20-40 seconds after the abort, unsurprisingly triggering several days of delays. Nevertheless, if SN11 can make it through a second static fire attempt without issue on Thursday or Friday, the Starship is still well on track to take flight weeks earlier than any of its predecessors.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading