News
SpaceX Starship launch delayed to Tuesday by poor FAA planning
Update: CEO Elon Musk says that SpaceX’s fourth high-altitude Starship launch has been delayed from Monday to Tuesday after an FAA inspector – recently required to be onsite for launches – was inexplicably more than six hours late.
While the smallest grain of salt is warranted given Musk’s recently vitriolic relationship with the FAA, the CEO has every reason not to lie about a federal regulatory agency that SpaceX almost fundamentally depends on. As such, the implication is that a lone FAA inspector – only recently required by the FAA itself to be onsite for SpaceX Starship launches – was somehow more than four or five hours away from Boca Chica, Texas by 11am CDT, March 29th.
The only possible explanation for such a delay is that a single inspector – lacking virtually any of the resources afforded to large government agency – missed a flight on a public airline, had a flight canceled at the last second, or was somehow stranded in the middle of nowhere by car issues. As any sane human familiar with air or car travel would know, those issues happen and should always be anticipated. Knowing full well that it had just changed SpaceX’s Starship launch license just two weeks prior to prevent flights without an inspector present, the FAA does not appear to have prepared for those issues in even the most basic sense, failing to ensure alternate methods of transport or two redundant inspectors.
In essence, due either to severe underfunding, general ineptitude, some childish attempt to assert dominance, or some combination of all three, the FAA has explicitly disrespected the hundreds of (possibly 1000+) SpaceX employees working around the clock for weeks to launch Starship SN11 as quickly as possible. Given that the FAA itself distributed Temporary Flight Restrictions (TFRs) for SN11’s Monday launch on Saturday and noted plans for the launch more than a day prior, the giant regulatory agency had no less than 24-48 hours of prior warning even if they’d somehow ignored or missed SpaceX’s own CEO announcing a delay to March 29th on March 26th.
If a regulatory agency like the FAA is incapable of ensuring that an inspector can stand around at a launch the agency itself required an inspector be present for days prior, the same apparatus assuredly should not and cannot be trusted to regulate systems as complex as modern aircraft, spacecraft, and rockets. If the FAA is, in fact, up to the challenge of responsibly regulating those systems with the public’s best interest in mind, then failing a task as simple as ensuring its own inspector is transported, on time, from Point A to Point B is a conscious decision or mistake. Either way, something clearly needs to change.
CEO Elon Musk says that SpaceX has delayed Starship serial number 11’s (SN11) high-altitude launch debut from Friday to Monday to best ensure that the company can “land & fully recover” the 50-meter-tall steel rocket.
First and foremost, the weekend will allow SpaceX times time for “additional checkouts” and scour Starship SN11 and the data it’s produced during testing for any red flags or minor issues. While plans for a same-day static fire and launch didn’t pan out on Friday, March 26th, SpaceX did manage the first half, firing up just one of Starship’s three Raptors to verify the health of the replacement engine after a Thursday Raptor swap. The test marked the first time SpaceX has intentionally fired up just one of the Raptors installed on a three-engine Starship prototype, so the delay will provide extra time to ensure that all three are still looking good.
Standing down SN11 until probably Monday. Additional checkouts are needed. Doing our best to land & fully recover.— Elon Musk (@elonmusk) March 26, 2021
The weather in Boca Chica, Texas has also taken a turn for the worse in the last few days, so the extra few days will also (hopefully) allow time for wind, visibility, and precipitation conditions to improve. According to Musk, Starship SN11 is now scheduled to fly as early as Monday “afternoon” and, as usual, SpaceX will offer live coverage of the fourth high-altitude launch and landing attempt beginning a few minutes before liftoff.
With a little luck, the Starship prototype will be able to continue a trend of iterative improvement and one-up Starship SN10 with a slightly softer landing and no explosion minutes after touchdown. Stay tuned for updates both here and on SpaceX’s social media platforms to catch the official webcast.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.