News
SpaceX working on several Starship, Super Heavy upgrades and design changes
Not long after Elon Musk confirmed plans to add three more Raptor engines to Starship and stretch the upper stage’s propellant tanks, the SpaceX CEO has confirmed one of several smaller design changes planned in the interim.
On January 3rd, Musk confirmed that SpaceX is entirely relocating one of two secondary ‘header’ tanks that Starships use to store landing propellant. A graphic sketched on the side of future Starship rings further revealed plans to tweak most of the subsections that SpaceX stacks to form a Starship, complementing an upgraded nosecone design. Finally, another design change was spotted on hardware that will eventually become part of the first full-thrust Super Heavy booster.
According to Musk, starting with Starship 24 (S24), which is likely the next ship SpaceX will complete, the methane (fuel) header tank will be relocated from Starship’s common dome to its nosecone. From the start, Starship’s oxygen header tank has been located in the very tip of the nose – placed in such an inconvenient location for the sole purpose of shifting Starship’s center of gravity forward. Now, the methane header tank will join it in the nose, with the obvious explanation being a need to shift that center of gravity even further forward. It’s possible that this change was planned before SpaceX realized the performance benefits of a stretched, nine-engine Starship, but it could also be a preemptive modification meant to counteract the added weight of three more Raptor engines and longer tanks.


Musk’s confirmation of the methane header tank’s relocation came just a few days after a drawing on the side of a Starship section further confirmed several more minor design changes. Starbase ‘hieroglyphics’ are not uncommon, as SpaceX engineers and technicians have often used hardware itself as a sort of whiteboard to sketch out plans and literally annotate ongoing work. This particular drawing was exceptionally detailed and useful, effectively showing exactly how Starship’s design will change beginning with Ship 24. The changes are simple enough: in essence, SpaceX will be adding an extra ring to several Starship ‘sections.’ For current ships, six distinct sections are stacked to form the Starship’s cylindrical tankage and hull.
It takes another five stacked sections to complete the current nosecone design. Counting the nose as one, it takes about seven stack operations to fully assemble the basic structure of a Starship. With the design changes sketched out on a Starship S24 ring and an upgraded nosecone that will debut on the same ship, fully assembling a nosecone will now take two or three stacks (down from five) and fully assembling a Starship will take six stacks (down from seven). While obviously not a major redesign, the changes will significantly simplify (and thus potentially speed up) Starship assembly, which will have additional positive follow-on impacts on plumbing, wiring, and heat shield installation.


There’s good reason to believe that some of the changes – especially expanding Starship’s nose barrel from four to five rings tall – will end up being applied to Super Heavy, potentially reducing the number of booster ‘sections’ needed from nine to seven or eight. However, there are already signs of some weirder changes being made to Super Heavy’s design. On December 21st, a Super Heavy thrust dome – likely Booster 7’s – was sleeved with several steel rings as part of a now-routine process, partially completing the first 33-engine thrust section. However, instead of the usual aft barrel section comprised of three six-foot-tall (~1.82m) steel rings, this ‘sleeve’ was made up of four ~1.4m-tall rings – the first time in Starbase history that shorter rings have appeared on any hardware.

Unlike all the other changes described above, it’s entirely unclear what benefit SpaceX is getting from keeping a given ship or booster section the same height while adding more smaller rings to it – a process that will inherently increase the complexity and amount of work required to complete that section. Regardless, it’s clear that SpaceX is in the midst of a significant period of design revision that could see Ship 24 and Booster 7 debut with a wide range of upgrades and design changes in just a few months.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.