News
SpaceX’s Starship rocket just breathed fire for the first time (and survived)
SpaceX’s Starship rocket is a step closer to flight after the fourth full-scale prototype successfully fired up its high-performance Raptor engine for the first time and survived the ordeal.
By far the biggest technical milestone SpaceX’s Starship program has passed since its creation, the Starship serial number 4 (SN4) prototype’s May 5th static fire was just the latest in a series of rapid-fire tests completed over the last several days. The ship’s journey began back in late March when SpaceX technicians began integrating the first sections of its steel hull. Less than a month later, SpaceX officially completed Starship SN4’s tank and engine section – missing only a nosecone and header tanks – and rolled the rocket to the launch and test pad on April 23rd.
Barely two days later, Starship SN4 entered the testing phase, passing what CEO Elon Musk described as an “ambient pressure test” used to verify the structural integrity of the rocket’s propellant tanks with harmless nitrogen gas. Less than a day after that pressure test was completed, SpaceX kicked off a “cryogenic proof test” with the Starship – the same test that destroyed three full-scale prototypes in the five months prior.

In the early morning of April 26th, Starship SN4 thus became the first full-scale prototype to pass (and survive) a cryogenic proof test, in which the ship’s normal liquid oxygen and methane was replaced with similarly frigid but non-explosive liquid nitrogen. According to Musk, SN4 was only pressurized to 4.9 bar (~70 psi), quite a distance away from the ~8.5 bar needed for safe orbital flight but reportedly more than enough to perform a small flight test.
Of course, Starship SN4 would first have to complete a bevy of additional tests – all arguably riskier than the cryogenic proof test it was the first to pass. That second, more challenging phase of testing began six days later on May 2nd.

After some limited fueling effectively marking Starship SN4’s first partial wet dress rehearsal (WDR), SpaceX aborted the first test attempt on May 2nd. On May 3rd, Starship SN4 was successfully loaded with propellant once more and wound up performing what is known as a spin prime test with its lone Raptor engine. Over the course of a few hours, SpaceX then recycled (and rechilled) the ship’s methane propellant and successfully performed a preburner test, igniting two gas generators that spin up Raptor’s turbines and eventually mix in the combustion chamber.
Less than 24 hours later, SpaceX turned Starship SN4 around for the grand finale – an actual Raptor ignition test, also known as a static fire. Per NASASpaceflight’s unofficial livestream of the event, made possible thanks to local resident BocaChicaGal, Starship ignited its Raptor engine – a historic first for the launch vehicle program – at 8:57pm CDT on May 5th (01:57 UTC, May 6). Musk confirmed just a few hours after that the ignition test – lasting about 3 seconds – had been completed successfully.



With that crucial milestone now behind it, Starship SN4 – perhaps pending an additional test or two – should effectively be clear to begin preparations for a 150m (500 ft) hop test later this month. Almost entirely contingent upon receiving a Federal Aviation Administration (FAA) launch license, that process could be finished tomorrow or take several days – or even weeks – to complete. Starship already has landing legs installed and wont need a nosecone for such a short and slow hop, but SpaceX may also need to install some kind of attitude control system (likely gas thrusters) before SN4 can safely fly.
Stay tuned for updates as we learn more about when a full-scale SpaceX Starship is scheduled to fly for the first time.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.