News
SpaceX’s Starship rocket just breathed fire for the first time (and survived)
SpaceX’s Starship rocket is a step closer to flight after the fourth full-scale prototype successfully fired up its high-performance Raptor engine for the first time and survived the ordeal.
By far the biggest technical milestone SpaceX’s Starship program has passed since its creation, the Starship serial number 4 (SN4) prototype’s May 5th static fire was just the latest in a series of rapid-fire tests completed over the last several days. The ship’s journey began back in late March when SpaceX technicians began integrating the first sections of its steel hull. Less than a month later, SpaceX officially completed Starship SN4’s tank and engine section – missing only a nosecone and header tanks – and rolled the rocket to the launch and test pad on April 23rd.
Barely two days later, Starship SN4 entered the testing phase, passing what CEO Elon Musk described as an “ambient pressure test” used to verify the structural integrity of the rocket’s propellant tanks with harmless nitrogen gas. Less than a day after that pressure test was completed, SpaceX kicked off a “cryogenic proof test” with the Starship – the same test that destroyed three full-scale prototypes in the five months prior.

In the early morning of April 26th, Starship SN4 thus became the first full-scale prototype to pass (and survive) a cryogenic proof test, in which the ship’s normal liquid oxygen and methane was replaced with similarly frigid but non-explosive liquid nitrogen. According to Musk, SN4 was only pressurized to 4.9 bar (~70 psi), quite a distance away from the ~8.5 bar needed for safe orbital flight but reportedly more than enough to perform a small flight test.
Of course, Starship SN4 would first have to complete a bevy of additional tests – all arguably riskier than the cryogenic proof test it was the first to pass. That second, more challenging phase of testing began six days later on May 2nd.

After some limited fueling effectively marking Starship SN4’s first partial wet dress rehearsal (WDR), SpaceX aborted the first test attempt on May 2nd. On May 3rd, Starship SN4 was successfully loaded with propellant once more and wound up performing what is known as a spin prime test with its lone Raptor engine. Over the course of a few hours, SpaceX then recycled (and rechilled) the ship’s methane propellant and successfully performed a preburner test, igniting two gas generators that spin up Raptor’s turbines and eventually mix in the combustion chamber.
Less than 24 hours later, SpaceX turned Starship SN4 around for the grand finale – an actual Raptor ignition test, also known as a static fire. Per NASASpaceflight’s unofficial livestream of the event, made possible thanks to local resident BocaChicaGal, Starship ignited its Raptor engine – a historic first for the launch vehicle program – at 8:57pm CDT on May 5th (01:57 UTC, May 6). Musk confirmed just a few hours after that the ignition test – lasting about 3 seconds – had been completed successfully.



With that crucial milestone now behind it, Starship SN4 – perhaps pending an additional test or two – should effectively be clear to begin preparations for a 150m (500 ft) hop test later this month. Almost entirely contingent upon receiving a Federal Aviation Administration (FAA) launch license, that process could be finished tomorrow or take several days – or even weeks – to complete. Starship already has landing legs installed and wont need a nosecone for such a short and slow hop, but SpaceX may also need to install some kind of attitude control system (likely gas thrusters) before SN4 can safely fly.
Stay tuned for updates as we learn more about when a full-scale SpaceX Starship is scheduled to fly for the first time.
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.
News
Anti-Tesla union leader ditches X, urges use of Threads instead
Tesla Sweden and IF Metall have been engaged in a bitter dispute for over two years now.
Marie Nilsson, chair of Sweden’s IF Metall union and a prominent critic of Tesla, has left X and is urging audiences to follow the union on Meta’s Threads instead.
Tesla Sweden and IF Metall have been engaged in a bitter dispute for over two years now.
Anti-Tesla union leader exits X
In a comment to Dagens Arbete (DA), Nilsson noted that her exit from X is not formally tied to IF Metall’s long-running labor dispute with Tesla Sweden. Still, she stated that her departure is affected by changes to the platform under Elon Musk’s leadership.
“We have stayed because many journalists pick up news there. But as more and more people have left X, we have felt that the standard has now been reached on that platform,” she said.
Jesper Pettersson, press officer at IF Metall, highlighted that the union’s departure from X is only indirectly linked to Tesla Sweden and Elon Musk. “Indirectly it does, since there is a lot of evidence that his ownership has caused the change in the platform to be so significant.
“We have nevertheless assessed that the platform had value for reaching journalists, politicians and other opinion leaders. But it is a microscopic proportion of the public and our members who are there, and now that value has decreased,” Petterson added.
IF Metall sees Threads as an X alternative
After leaving X, IF Metall has begun using Threads, Meta’s alternative to the social media platform. The union described the move as experimental, noting that it is still evaluating how effective the platform will be for outreach and visibility.
Pettersson acknowledged that Meta also does not operate under Sweden’s collective bargaining model, but said the union sees little alternative if it wants to remain visible online.
“In a perfect world, all large international companies would be supporters of the Swedish model when they come here. But unfortunately, the reality is not like that. If we are to be visible at all in this social media world, we have to play by the rules of the game. The alternative would be to become completely invisible, and that would not benefit our members,” he said.