Connect with us

News

SpaceX is installing Tesla battery packs on its Starship MK1 rocket prototype

SpaceX appears to be installing numerous off-the-shelf Tesla battery packs on its Starship Mk1 prototype. (NASASpaceflight - bocachicagal)

Published

on

First noticed by NASASpaceflight.com forum member “exilon”, SpaceX appears to have selected off-the-shelf Tesla battery packs as the power storage method of choice for its Starship Mk1 prototype, currently in the midst of a busy period of integration

Potentially taken directly from Tesla Model S/X powertrains otherwise headed for recycling, SpaceX technicians have spent the last 24 or so hours attaching numerous battery packs to part of a Starship subsystem known as header tanks. This is the latest addition to SpaceX and Tesla’s relatively close relationship – the two have begun to work together to solve challenges with materials science, batteries, and more within the last 12-24 months.

While initially surprising, the appearance of battery packs quite literally taken from Tesla Model S/X vehicles or their Gigafactory assembly line actually makes a lot of sense. By using prepackaged, off-the-shelf battery systems with industry-leading power management capabilities, SpaceX is probably saving a huge amount of time, money, and effort. If the battery packs were already nearing the end of their useful automotive lives, the net cost could very well approach zero, aside from what looks like a minimal mounting brace. It’s possible that SpaceX has even pursued modifying and certifying large Tesla-derived battery packs for use on orbital Starship missions.

A SpaceX technician is pictured mounting multiple Tesla battery packs on a Starship Mk1 header tank on September 23rd. (NASASpaceflight – bocachicagal)
This screenshot from a 2017 Tesla Model S battery teardown is almost identical to the batteries pictured above in Boca Chica, Texas. (YouTube – jehugarcia)

These battery packs were spotted by an eagle-eyed forum user who was first to recognize the hardware for what it likely was. Per the above photo, SpaceX appears to have joined two self-contained Tesla battery packs into single units that were then installed on a header tank. Knowing that the highest capacity Tesla offers is ~100 kWh, the 2×2 packs could store up to 400 kWh and offer instantaneous power output (ignoring thermal limitations) well into the megawatt (MW) range. It’s unclear if the first header tank also had batteries attached but SpaceX technicians began installing that tank inside Starship’s nose cone on the evening September 22nd. Tank #2 will likely follow in the next 24 hours per Musk’s indication that Starship Mk1 would be stacked to its full height on Wednesday.

A Starship header tank on the move on September 22nd. Starship will have two tanks – one for methane and one for oxygen. (NASASpaceflight – bocachicagal)

For unknown reasons, SpaceX is choosing to mount the ~1000 kg (2200 lb) battery pack pairs directly onto the outside of one of Starship Mk1’s two header tanks. These tanks compliment the rocket prototype’s main propellant tanks and are meant to serve as small reserves of fuel (methane) and oxidizer (oxygen) that can be pressurized independently. During dramatic in-space and in-atmosphere maneuvers, the g-forces exerted on Starship could easily find the vehicle’s propellant pushed away from the ‘bottom’ of its main tanks, creating bubbles or voids that can damage and destroy rocket engines if ingested.

Pressurizing the entirety of the main tanks (a cylinder measuring 9m by ~40m or 30×130 ft) is extremely impractical – hence the need for much smaller header tanks. Falcon 9 boosters are able to sidestep this issue because they are small and light enough (relatively speaking) that cold gas thrusters can efficiently generate the positive Gs needed to safely ignite its engines for recovery and landing maneuvers. Empty, Starship alone will likely weigh no less than 4-6 times as much as a Falcon 9 booster (~25 tons, 55,000 lb).

Technicians install some of the external propellant lines Starship will need to fuel its tanks and feed propellant from its nose’s header tanks to its engine section. (NASASpaceflight – bocachicagal)

According to CEO Elon Musk, SpaceX has decided to install those header tanks in the very tip of Starship Mk1’s conical nose to help balance out the vehicle’s center of mass. As a side-effect, SpaceX will have to install feed lines that run the entire length of the spacecraft and protect them with steel aero-covers. It’s unclear if this design choice is necessitated by Starship’s early, prototypical form or if – once outfitted with crew quarters or a functional cargo bay – it’s possible that that added mass will serve as enough of a counterbalance to preclude the need for ballast in the nose.

Workers install a section of raceway – meant to protect plumbing lines and cabling – on the bottom of Starship Mk1’s nose section. (NASASpaceflight – bocachicagal)

Musk posted a view inside an adjacent SpaceX fabrication facility in Boca Chica on September 23rd, showing a large row of staged steel sheets that will eventually be formed into aerodynamic shrouds for Starship Mk1’s raceways, fins, and wings.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading