News
SpaceX is installing Tesla battery packs on its Starship MK1 rocket prototype
First noticed by NASASpaceflight.com forum member “exilon”, SpaceX appears to have selected off-the-shelf Tesla battery packs as the power storage method of choice for its Starship Mk1 prototype, currently in the midst of a busy period of integration
Potentially taken directly from Tesla Model S/X powertrains otherwise headed for recycling, SpaceX technicians have spent the last 24 or so hours attaching numerous battery packs to part of a Starship subsystem known as header tanks. This is the latest addition to SpaceX and Tesla’s relatively close relationship – the two have begun to work together to solve challenges with materials science, batteries, and more within the last 12-24 months.
While initially surprising, the appearance of battery packs quite literally taken from Tesla Model S/X vehicles or their Gigafactory assembly line actually makes a lot of sense. By using prepackaged, off-the-shelf battery systems with industry-leading power management capabilities, SpaceX is probably saving a huge amount of time, money, and effort. If the battery packs were already nearing the end of their useful automotive lives, the net cost could very well approach zero, aside from what looks like a minimal mounting brace. It’s possible that SpaceX has even pursued modifying and certifying large Tesla-derived battery packs for use on orbital Starship missions.


These battery packs were spotted by an eagle-eyed forum user who was first to recognize the hardware for what it likely was. Per the above photo, SpaceX appears to have joined two self-contained Tesla battery packs into single units that were then installed on a header tank. Knowing that the highest capacity Tesla offers is ~100 kWh, the 2×2 packs could store up to 400 kWh and offer instantaneous power output (ignoring thermal limitations) well into the megawatt (MW) range. It’s unclear if the first header tank also had batteries attached but SpaceX technicians began installing that tank inside Starship’s nose cone on the evening September 22nd. Tank #2 will likely follow in the next 24 hours per Musk’s indication that Starship Mk1 would be stacked to its full height on Wednesday.

For unknown reasons, SpaceX is choosing to mount the ~1000 kg (2200 lb) battery pack pairs directly onto the outside of one of Starship Mk1’s two header tanks. These tanks compliment the rocket prototype’s main propellant tanks and are meant to serve as small reserves of fuel (methane) and oxidizer (oxygen) that can be pressurized independently. During dramatic in-space and in-atmosphere maneuvers, the g-forces exerted on Starship could easily find the vehicle’s propellant pushed away from the ‘bottom’ of its main tanks, creating bubbles or voids that can damage and destroy rocket engines if ingested.
Pressurizing the entirety of the main tanks (a cylinder measuring 9m by ~40m or 30×130 ft) is extremely impractical – hence the need for much smaller header tanks. Falcon 9 boosters are able to sidestep this issue because they are small and light enough (relatively speaking) that cold gas thrusters can efficiently generate the positive Gs needed to safely ignite its engines for recovery and landing maneuvers. Empty, Starship alone will likely weigh no less than 4-6 times as much as a Falcon 9 booster (~25 tons, 55,000 lb).

According to CEO Elon Musk, SpaceX has decided to install those header tanks in the very tip of Starship Mk1’s conical nose to help balance out the vehicle’s center of mass. As a side-effect, SpaceX will have to install feed lines that run the entire length of the spacecraft and protect them with steel aero-covers. It’s unclear if this design choice is necessitated by Starship’s early, prototypical form or if – once outfitted with crew quarters or a functional cargo bay – it’s possible that that added mass will serve as enough of a counterbalance to preclude the need for ballast in the nose.

Musk posted a view inside an adjacent SpaceX fabrication facility in Boca Chica on September 23rd, showing a large row of staged steel sheets that will eventually be formed into aerodynamic shrouds for Starship Mk1’s raceways, fins, and wings.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s Boring Company opens Vegas Loop’s newest station
The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.
Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.
The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.
Fontainebleau Loop station
The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.
The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.
Vegas Loop expansion
In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.
Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.
The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.
News
Tesla leases new 108k-sq ft R&D facility near Fremont Factory
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay.
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
A new Fremont lease
Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.
As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.
Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.
AI investments
Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.
Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.
Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026