News
SpaceX Starship test plans solidify after bad weather delays hop
Around the same time SpaceX was preparing for its 100th Falcon rocket launch, bad Texas weather forced the company to abort its second Starship hop test of the month.
Since that abort, SpaceX’s near-term Starship test plans have begun to solidify, offering a clearer picture of what to expect over the next week or two. Pending better weather at its Boca Chica, Texas test facilities, Starship serial number 6 (SN6) is still first in line and has been preparing for its hop debut ever since the prototype completed a Raptor engine static fire test on August 23rd.
Measuring approximately 30m (~100 ft) tall, SN6 is a full-scale Starship tank and engine section – the bottom ~60% and business end of the reusable orbital spacecraft. Of course, SpaceX has a ways to go before Starship is actually ready for its first orbital test flight, let alone reuse after such a test flight, but the company did take its biggest step yet towards that lofty ambitions with Starship SN5’s successful August 4th hop debut.
Effectively twins, Starship SN5 and SN6 have since been expected to take turns completing “several” hops to improve SpaceX’s familiarity with Starship launch operations and work towards a smooth procedure that can be completed multiple times per day. With SN6 now scheduled to hop no earlier than 8am CDT (UTC-5), September 3rd, 29 days after SN5’s debut, SpaceX still has its work cut out for it.

Nevertheless, SN5’s 150m (~500 ft) hop was the first flight of any kind for a full-scale Starship prototype, as well as the first use of an entirely new landing leg design and Raptor’s first flight in almost a year. In the history of rocket development, there is no precedent for launching and landing a prototype rocket and then repeating the same test with an entirely new prototype less than a month later.
Additionally, most of the 29 days since SN5’s first hop have been spent preparing Starship SN6 for a crucial “cryo proof” qualification test. Had that cryo proof been completed before SN5’s hop debut, SN6 could have been ready to fly as few as ~10 days later. That still leaves SpaceX a long ways away from multiple Starship hops per day but does offer encouragement that flight-proven Starship SN5 could be ready for its second hop not long after the pad is clear.

However, it appears that SpaceX instead plans to follow up SN6’s hop debut with a new ‘test tank’ meant to demonstrate an upgraded Starship “thrust puck” built out of a different steel alloy. Known as Starship SN7.1, the test will follow on the heels of a more traditional tank (SN7) that completed a record-breaking pressure test in June 2020 and proved that Starship would likely be better off with a different steel alloy.
While SN7 was a basic test tank (two domes and a few steel rings), SN7.1 adds a skirt section at its base and replaces the aft dome with a thrust dome. Likely built entirely out of a steel alloy closer to 304L than the 301 SpaceX has used for all prior Starship prototypes, that thrust dome features a new ‘thrust puck’ – the structural element Raptor engines attach to and transmit their thrust through.



Unlike past single tank tests, SN7.1 will be put through something more like a full prototype’s cryo pressure test. SN7.1 will be installed on a launch mount, allowing its skirt clamps to firmly secure the prototype to the stand, itself secured to a concrete slab on the ground. That launch mount also allows SpaceX to install a hydraulic ram designed to mechanically simulate the thrust of 1-3 Raptor engines without the risk involved in an actual static fire. SN7.1 is scheduled to begin testing no earlier than (NET) 8 am CDT (UTC-5), September 6th – just three days after SN6’s next planned hop attempt.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
