News
SpaceX’s second Starship hop imminent after Raptor static fire test
SpaceX has successfully fired up a new Starship prototype’s Raptor engine, putting the company on track for its second Starship hop test as soon as this week.
The milestone comes not long after SpaceX Starship serial number 6 (SN6) completed its first cryogenic proof, a pressure test with liquid nitrogen (LN2) used to safely verify the structural integrity of tanks (and rockets, in particular). Measuring 9m (30 ft) wide and some 30m (~100 ft) tall, SpaceX rolled Starship SN6 from its Boca Chica, Texas factory to a nearby test and launch facility on August 11th and wrapped up its first acceptance test on August 16th.
Now, just seven days after its cryo proof, SpaceX has installed a new Raptor engine (SN29), prepared SN6 for a much riskier round of tests, and completed a static fire with said engine, leaving just one major step between the Starship and its hop debut. Of course, the process still had its fair share of hiccups.
SpaceX’s first SN6 static fire test window – published by Cameron County in the form of road closure notices – was set for 8 am to 8 pm CDT (UTC-5), August 23rd a few days after the Starship’s cryo proof. The first test attempt began around 9:30 am but was aborted soon after as SpaceX employees returned to the launch pad to (presumably) troubleshoot. The second attempt began around 2:30 pm, leaving a little less than half the test window available.
Attempt #2 very nearly managed to extract a static fire, aborting possibly a second or less before Raptor ignition around 3:41 pm. Once again, SpaceX teams returned to the pad after Starship was detanked and safed, briefly inspecting the general location of the rocket’s Raptor engine before once again clearing the pad around 6:30 pm. At long last, Starship SN6 began a smooth and fast flow that culminated in the ignition of Raptor SN29 around 7:45 pm, just 15 minutes before the end of SpaceX’s test window.


As with all SpaceX static fires, engineers must still analyze the data produced – and possibly inspect pad or rocket hardware – to verify vehicle health before proceeding into launch operations. Unlike all other SpaceX static fires, the company doesn’t announce the results of those tests – nor the solidified launch window – during prototype development programs. In the context of iterative aerospace development, while there may be such a thing as a “good” or “bad” test, all tests – as long as they’re performed safely and produce a large quantity of usable data – are essentially successful.
As such, it’s likely for the best that SpaceX doesn’t put the public focus on the “success” of any given test. Still, it means that unofficial educated guesses are typically the only way to determine the results of any given test and how those results impact the next steps. For SN6, the very broad-strokes conclusions one can draw from unofficial livestreams suggest that the Starship’s first Raptor static fire was a success. Assuming that the unknown cause(s) of the day’s two prior aborts were minor and easily rectified, SpaceX is likely exactly on schedule for Starship SN6’s first hop attempt.
SN6’s first flight is expected to be an almost identical copy of Starship SN5’s highly successful August 4th debut, following the same 150m (~500 ft) parabolic trajectory. Filed before SN6’s August 23rd static fire, SpaceX has penciled in Friday, August 28th for Starship SN6’s own hop debut. Thanks to the fact that SpaceX was able to complete both SN6’s cryo proof and static fire on the first day of their respective test windows, August 28th is likely well within reach. Stay tuned for updates as Starship SN6’s hop debut schedule solidifies.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla teases new market entrance with confusing and cryptic message
Tesla teased its entrance into a new market with a confusing and what appeared to be cryptic message on the social media platform X.
The company has been teasing its entrance into several markets, including Africa, which would be a first, and South America, where it only operates in Chile.
In September, Tesla started creating active job postings for the Colombian market, hinting it would expand its presence in South America and launch in a new country for the first time in two years.
The jobs were related to various roles, including Associate Sales Manager, Advisors in Sales and Delivery, and Service Technicians. These are all roles that would indicate Tesla is planning to launch a wide-scale effort to sell, manage, and repair vehicles in the market.
Last night, Tesla posted its latest hint, a cryptic video that seems to show the outline of Colombia, teasing its closer than ever to market entry:
— Tesla North America (@tesla_na) November 12, 2025
This would be the next expansion into a continent where it does not have much of a presence for Tesla. Currently, there are only two Supercharger locations on the entire continent, and they’re both in Chile.
Tesla will obviously need to expand upon this crucial part of the ownership experience to enable a more confident consumer base in South America as a whole. However, it is not impossible, as many other EV charging infrastructures are available, and home charging is always a suitable option for those who have access to it.
Surprisingly, Tesla seems to be more concerned about these middle-market countries as opposed to the larger markets in South America, but that could be by design.
If Tesla were to launch in Brazil initially, it may not be able to handle the uptick in demand, and infrastructure expansion could be more difficult. Brazil may be on its list in the upcoming years, but not as of right now.
@teslarati 🚨🚨 Tesla Full Self-Driving and Yap is the best driving experience #tesla #fsd #yapping ♬ I Run – HAVEN.
News
Tesla expands crucial Supercharging feature for easier access
It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.
Tesla has expanded a crucial Supercharging feature that helps owners identify stall availability at nearby locations.
Tesla said on Tuesday night that its “Live Availability” feature, which shows EV owners how many stalls are available at a Supercharger station, to Google Maps, a third-party app:
Live availability of Superchargers now in Google Maps pic.twitter.com/DJvS83wVxm
— Tesla Charging (@TeslaCharging) November 11, 2025
Already offering it in its own vehicles, the Live Availability feature that Teslas have is a helpful feature that helps you choose an appropriate station with plugs that are immediately available.
A number on an icon where the Supercharger is located lets EV drivers know how many stalls are available.
It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.
Essentially, when those drivers needed to charge at a Supercharger that enables non-Tesla EVs to plug in, there was a bit more of a gamble. There was no guarantee that a plug would be available, and with no way to see how many are open, it was a risk.
Tesla adding this feature allows people to have a more convenient and easier-to-use experience if they are in a non-Tesla EV. With the already expansive Supercharger Network being available to so many EV owners, there is more congestion than ever.
This new feature makes the entire experience better for all owners, especially as there is more transparency regarding the availability of plugs at Supercharger stalls.
It will be interesting to see if Tesla is able to expand on this new move, as Apple Maps compatibility is an obvious goal of the company’s in the future, we could imagine. In fact, this is one of the first times an Android Auto feature is available to those owners before it became an option for iOS users.
Apple owners tend to get priority with new features within the Tesla App itself.
Elon Musk
Elon Musk’s Boring Co goes extra hard in Nashville with first rock-crushing TBM
The Boring Company’s machine for the project is now in final testing.
The Boring Company is gearing up to tackle one of its toughest projects yet, a new tunnel system beneath Nashville’s notoriously tough limestone terrain. Unlike the soft-soil conditions of Las Vegas and Austin, the Music City Loop will require a “hard-rock” boring machine capable of drilling through dense, erosion-resistant bedrock.
The Boring Company’s machine for the project is now in final testing.
A boring hard-rock tunneling machine
The Boring Company revealed on X that its new hard-rock TBM can generate up to 4 million pounds of grip force and 1.5 million pounds of maximum thrust load. It also features a 15-filter dust removal system designed to keep operations clean and efficient during excavation even in places where hard rock is present.
Previous Boring Co. projects, including its Loop tunnels in Las Vegas, Austin, and Bastrop, were dug primarily through soft soils. Nashville’s geology, however, poses a different challenge. Boring Company CEO and President Steve Davis mentioned this challenge during the project’s announcement in late July.
“It’s a tough place to tunnel, Nashville. If we were optimizing for the easiest places to tunnel, it would not be here. You have extremely hard rock, like way harder than it should be. It’s an engineering problem that’s fairly easy and straightforward to solve,” Davis said.
Nashville’s limestone terrain
Experts have stated that the city’s subsurface conditions make it one of the more complex tunneling environments in the U.S. The Outer Nashville Basin is composed of cherty Mississippian-age limestone, a strong yet soluble rock that can dissolve over time, creating underground voids and caves, as noted in a report from The Tennessean.
Jakob Walter, the founder and principal engineer of Haushepherd, shared his thoughts on these challenges. “Limestone is generally a stable sedimentary bedrock material with strength parameters that are favorable for tunneling. Limestone is however fairly soluble when compared to other rack materials, and can dissolve over long periods of time when exposed to water.
“Unexpected encounters with these features while tunneling can result in significant construction delays and potential instability of the excavation. In urban locations, structures at the ground surface should also be constantly monitored with robotic total stations or similar surveying equipment to identify any early signs of movement or distress,” he said.
-
News5 days agoTesla shares rare peek at Semi factory’s interior
-
Elon Musk5 days agoTesla says texting and driving capability is coming ‘in a month or two’
-
News4 days agoTesla makes online ordering even easier
-
News5 days agoTesla Model Y Performance set for new market entrance in Q1
-
News5 days agoTesla Cybercab production starts Q2 2026, Elon Musk confirms
-
News6 days agoTesla China expecting full FSD approval in Q1 2026: Elon Musk
-
News6 days agoTesla Model Y Performance is rapidly moving toward customer deliveries
-
News3 days agoTesla is launching a crazy new Rental program with cheap daily rates