News
SpaceX tests Starship and Frankenstein ‘test tank’ simultaneously
After another few weeks of downtime, SpaceX has simultaneously tested the first orbital-class Starship prototype and a Frankenstein-esque ‘test tank’ at its South Texas facilities. While nothing that occurred was all that visually spectacular, the afternoon of testing was still noteworthy for a couple of reasons.
First up, following a successful six-engine Raptor static fire – the first in Starbase history – on November 12th, all signs pointed to Starship S20 attempting another static fire (its fourth) on December 1st. In the almost three weeks of inactivity between those planned tests, SpaceX likely performed extensive inspections of the pathfinder prototype and its Raptor engines. Technicians also repaired the minor heat shield damage and tile loss that testing incurred and patched a few other ‘holes’, effectively leaving Ship 20 with the first fully finished heat shield by the end of November.
Earlier this week, one of the few remaining Boca Chica Village residents received a safety notice from SpaceX indicating that a static fire test was scheduled on Wednesday, December 1st – followed soon after by a notice to mariners (NOTAM) warning boaters to keep to a safe distance. Two hours into the 10am to 6pm CST test window, Starship S20 was already venting and starting to get frosty, confirming that propellant loading had begun. A little over an hour later, it was clear that SpaceX had aborted the first static fire attempt of the day. For the next three hours, Ship 20 exhibited some unusual behavior including new vents, an apparent header tank pressurization or fill test, and still more odd venting in new places.
In the middle of Starship’s weird nose-related testing, SpaceX began simultaneously loading a new ‘test tank’ known as B2.1 with liquid nitrogen (LN2) – marking the first truly simultaneous test of multiple Starship test articles. As Ship 20 seemingly detanked for the second time that day, the B2.1 tank was fully loaded with LN2 and apparently pressure-tested not long after. A few hours later, the test tank was also detanked and the road to the pad was reopened, marking the end of the day’s testing.
Normally, nothing is particularly unusual or noteworthy about test tank testing. Since January 2020, SpaceX has routinely built and tested tanks that are effectively just shorter versions of actual tanks and hardware, using them to qualify changes to Starship’s design, materials, operations, and more before applying those changes to full-size prototypes. B2.1 is the tenth dedicated test tank to reach the launch pad in a little under two years.
Normally, the ‘B2.1’ name SpaceX has given the tank would imply that it’s a newer booster test tank (using Bx instead of BNx) following in the footsteps of BN2.1, which passed cryogenic and load testing this summer. Instead, though, B2.1 is a bit of a nightmarish amalgamation of seemingly random Starship and Super Heavy parts. Its forward dome is an old, unused booster section complete with the hexagonal structure grid fins would have been brace against. Its aft section is a booster thrust structure. Up to that point, it’s effectively just a copy of BN2.1.
However, SpaceX inexplicably installed a Starship thrust dome inside B2.1’s booster thrust structure, creating a test tank with no obvious relevance to any conceivable Starship or Super Heavy design or prototype. Further, SpaceX rolled B2.1 to the launch site for testing only after installing it on an unused device that’s believed to be the aft half of a dedicated booster structural test stand. In theory, a sort of ‘cap’ would be fitted on top of a booster or test tank installed in the stand’s base and strong cables would connect the two, allowing SpaceX to subject prototypes to compressive stress – like, perhaps, the forces a booster might experience while carrying a fully-fueled 1300-ton Starship to space. The upper half of that test structure has yet to be moved to the launch site.
Altogether, the weird half-complete test stand and bizarre fusion of ship and booster parts make B2.1’s purpose and initial testing a complete mystery. It’s unclear what value it provides that makes it more of a priority than, say, finally starting to test the first flightworthy Super Heavy booster (B4). Ultimately, the most interesting thing about B2.1’s test debut is the fact that it appears to mark the first use of Starbase’s brand new orbital tank farm, which is approaching completion.
Elon Musk
SpaceX maintains unbelievable Starship target despite Booster 18 incident
It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight.
Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
Starship V3 is still on a rapid development path
SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.”
SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.
Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.
Booster 18 failure not slowing Starship V3’s schedule
SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.
Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.
News
Tesla Sweden faces fresh union blockade at key Gothenburg paint shop
Allround Lack works with painting and damage repair of passenger cars, including Teslas.
Tesla’s ongoing labor conflict in Sweden escalated again as the trade union IF Metall issued a new blockade halting all Tesla paintwork at Allround Lack in Gothenburg.
Allround Lack works with painting and damage repair of passenger cars, including Teslas. It currently employs about 20 employees.
Yet another blockade against Tesla Sweden
IF Metall’s latest notice ordered a full work stoppage for all Tesla-related activity at Allround Lack. With the blockade in place, paint jobs on Tesla-owned vehicles, factory-warranty repairs, and transport-damage fixes, will be effectively frozen, as noted in a report from Dagens Arbete. While Allround Lack is a small paint shop, its work with Tesla means that the blockade would add challenges to the company’s operations in Sweden, at least to some degree.
Paint shop blockades have been a recurring tool in the longstanding conflict. The first appeared in late 2023, when repair shops were barred from servicing Tesla vehicles. Days later, the Painters’ Union implemented a nationwide halt on Tesla paint work across more than 100 shops. Since then, a steady stream of workshops has been pulled into the conflict.
Earlier blockades faced backlash from consumers
The sweeping effects of the early blockades drew criticism from industry groups and consumers. Employers and industry organization Transportföretagen stated that the strikes harmed numerous workshops across Sweden, with about 10 of its members losing about 50% of their revenue.
Private owners also expressed their objections. Tibor Blomhäll, chairman of Tesla Club Sweden, told DA in a previous statement that the blockades from IF Metall gave the impression that the union was specifically attacking consumers. “If I get parking damage to my car, I pay for the paint myself. The company Tesla is not involved in that deal at all. So many people felt singled out, almost stigmatized. What have I done as a private individual to get a union against me?” Blomhäll stated.
In response to these complaints, IF Metall introduced exemptions, allowing severely damaged vehicles to be repaired. The union later reopened access for private owners at workshops with collective agreements. The blockades at the workshops were also reformulated to only apply to work that is “ordered by Tesla on Tesla’s own cars, as well as work covered by factory warranties and transport damage on Tesla cars.”
News
Tesla breaks Norway’s all-time annual sales record with one month to spare
With November alone delivering 4,260 new registrations, Tesla has cemented its most dominant year ever in one of Europe’s most mature EV markets.
Tesla shattered Norway’s decade-old annual sales record this month, overtaking Volkswagen’s long-standing milestone with over one month still left in the year. Backed by surging demand ahead of Norway’s upcoming VAT changes, Tesla has already registered 26,666 vehicles year-to-date, surpassing Volkswagen’s 2016 record of 26,572 units.
With November alone delivering 4,260 new registrations month-to-date, Tesla has cemented its most dominant year ever in one of Europe’s most mature EV markets.
Model Y drives historic surge in Norway
Tesla’s impressive momentum has been led overwhelmingly by the Model Y, which accounted for 21,517 of Norway’s registrations this year, as noted in a CarUp report, citing data from Elbil Statistik. The Model 3 followed with 5,087 units, while the Model S and Model X contributed 30 and 19 vehicles, respectively. Even the parallel-imported Cybertruck made the charts with 13 registrations.
Demand intensified sharply through autumn as Norwegian buyers rushed to secure deliveries before the country’s VAT changes take effect in January. The new regulation is expected to add roughly NOK 50,000 to the price of a Model Y, prompting a wave of early purchases that helped lift Tesla beyond the previous all-time record well before year-end.
With December still ahead, Tesla is positioned to extend its historic lead further. Needless to say, it appears that Norway will prove to be one of Tesla’s strongest markets in Europe.
FSD could be a notable demand driver in 2026
What’s especially interesting about Tesla’s feat in Norway is that the company’s biggest selling point today, Full Self-Driving (Supervised), is not yet available there. Tesla, however, recently noted in a post on X that the Dutch regulator RDW has reportedly committed to issuing a Netherlands national approval for FSD (Supervised) in February 2026.
The RDW posted a response to Tesla’s post, clarifying the February 2026 target but stating that FSD’s approval is not assured yet. “The RDW has drawn up a schedule with Tesla in which Tesla is expected to be able to demonstrate that FSD Supervised meets the requirements in February 2026. RDW and Tesla know what efforts need to be made to make a decision on this in February. Whether the schedule will be met remains to be seen in the coming period,” the RDW wrote in a post on its official wesbite.
If FSD (Supervised) does get approved next year, Tesla’s vehicles could gain a notable advantage over competitors, as they would be the only vehicles on the market capable of driving themselves on both inner-city streets and highways with practically no driver input.