Connect with us

News

SpaceX tests Starship and Frankenstein ‘test tank’ simultaneously

Starship S20 and test tank B2.1 enjoy some simultaneous venting. (NASASpaceflight - bocachicagal)

Published

on

After another few weeks of downtime, SpaceX has simultaneously tested the first orbital-class Starship prototype and a Frankenstein-esque ‘test tank’ at its South Texas facilities. While nothing that occurred was all that visually spectacular, the afternoon of testing was still noteworthy for a couple of reasons.

First up, following a successful six-engine Raptor static fire – the first in Starbase history – on November 12th, all signs pointed to Starship S20 attempting another static fire (its fourth) on December 1st. In the almost three weeks of inactivity between those planned tests, SpaceX likely performed extensive inspections of the pathfinder prototype and its Raptor engines. Technicians also repaired the minor heat shield damage and tile loss that testing incurred and patched a few other ‘holes’, effectively leaving Ship 20 with the first fully finished heat shield by the end of November.

Earlier this week, one of the few remaining Boca Chica Village residents received a safety notice from SpaceX indicating that a static fire test was scheduled on Wednesday, December 1st – followed soon after by a notice to mariners (NOTAM) warning boaters to keep to a safe distance. Two hours into the 10am to 6pm CST test window, Starship S20 was already venting and starting to get frosty, confirming that propellant loading had begun. A little over an hour later, it was clear that SpaceX had aborted the first static fire attempt of the day. For the next three hours, Ship 20 exhibited some unusual behavior including new vents, an apparent header tank pressurization or fill test, and still more odd venting in new places.

In the middle of Starship’s weird nose-related testing, SpaceX began simultaneously loading a new ‘test tank’ known as B2.1 with liquid nitrogen (LN2) – marking the first truly simultaneous test of multiple Starship test articles. As Ship 20 seemingly detanked for the second time that day, the B2.1 tank was fully loaded with LN2 and apparently pressure-tested not long after. A few hours later, the test tank was also detanked and the road to the pad was reopened, marking the end of the day’s testing.

Normally, nothing is particularly unusual or noteworthy about test tank testing. Since January 2020, SpaceX has routinely built and tested tanks that are effectively just shorter versions of actual tanks and hardware, using them to qualify changes to Starship’s design, materials, operations, and more before applying those changes to full-size prototypes. B2.1 is the tenth dedicated test tank to reach the launch pad in a little under two years.

Advertisement

Normally, the ‘B2.1’ name SpaceX has given the tank would imply that it’s a newer booster test tank (using Bx instead of BNx) following in the footsteps of BN2.1, which passed cryogenic and load testing this summer. Instead, though, B2.1 is a bit of a nightmarish amalgamation of seemingly random Starship and Super Heavy parts. Its forward dome is an old, unused booster section complete with the hexagonal structure grid fins would have been brace against. Its aft section is a booster thrust structure. Up to that point, it’s effectively just a copy of BN2.1.

However, SpaceX inexplicably installed a Starship thrust dome inside B2.1’s booster thrust structure, creating a test tank with no obvious relevance to any conceivable Starship or Super Heavy design or prototype. Further, SpaceX rolled B2.1 to the launch site for testing only after installing it on an unused device that’s believed to be the aft half of a dedicated booster structural test stand. In theory, a sort of ‘cap’ would be fitted on top of a booster or test tank installed in the stand’s base and strong cables would connect the two, allowing SpaceX to subject prototypes to compressive stress – like, perhaps, the forces a booster might experience while carrying a fully-fueled 1300-ton Starship to space. The upper half of that test structure has yet to be moved to the launch site.

Since this diagram was published, SpaceX has also tested BN2.1, GSE-4, and now B2.1.

Altogether, the weird half-complete test stand and bizarre fusion of ship and booster parts make B2.1’s purpose and initial testing a complete mystery. It’s unclear what value it provides that makes it more of a priority than, say, finally starting to test the first flightworthy Super Heavy booster (B4). Ultimately, the most interesting thing about B2.1’s test debut is the fact that it appears to mark the first use of Starbase’s brand new orbital tank farm, which is approaching completion.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Full Self-Driving impressions after three weeks of ownership

I will be fair and tell you all what I truly enjoy, as well as what frustrates me about Full Self-Driving.

Published

on

Credit: Joey Klender

Tesla Full Self-Driving is amongst the most robust and refined semi-autonomous driver assistance systems on the market today. After three weeks of ownership, I’ve driven around half of my miles using it, and my impressions put me right in the middle of it being very impressive and needing some work.

Of course, if it were perfect, it would be driving us all around all the time while we sleep, scroll our phones, or watch movies in the cockpit. It does a lot of things very well, and it has managed to impress everyone I’ve put in the passenger’s seat.

However, there are some things that are obvious pain points, situations that need improvement, and areas where I believe it has a long way to go. Regardless, these are things I have noticed, and they may differ from your opinions based on your location or traffic situations.

Tesla Model Y ownership two weeks in: what I love and what I don’t

I’ll try to keep it pretty even and just highlight the things that are truly noticeable with Full Self-Driving. I won’t be too critical of the things that it is bad at, and I won’t try to give it too much of a pat on the back.

I will be fair and tell you all what I truly enjoy, as well as what frustrates me about it.

*Disclaimer: These Full Self-Driving examples were in use with v13.2.9.

Where Tesla Full Self-Driving is Great

Highway Driving

I have yet to have a critical intervention of any kind on the highway. I have driven on easy highways like Rt. 30 in Pennsylvania, and I have driven on congested four-lane parking lots like I-695 near Baltimore, Maryland.

Tesla FSD does a tremendous job on all of it. I usually use the “Hurry” setting of FSD with an offset of between 25 and 40 percent, depending on what I’m doing and where I’m going. Sometimes, I want to push it a bit, and at other times, I’m okay with taking my time and enjoying the drive.

I find the driving style of Hurry is more similar to the traffic around me than the Standard, which tends to drive like an 80-year-old on their way to Bingo.

It does a great job of being considerate, maintaining an appropriate rate of travel, getting over for cars that are tailgating in the left lane after passing traffic, and it always is where it needs to be when it needs to be there.

Taking the Stress Out of Driving

A few nights ago, I was having some trouble sleeping, and I was up at 3 a.m. I decided it would be a good time to get up, grab a breakfast burrito and a coffee, and head to the Supercharger.

(If you don’t know, I do not have home charging, and I will be diving into EV ownership without that in a future article.)

I let FSD drive me to the Supercharger and back while I was done. I was able to enjoy a beautiful sunrise without having to focus all my attention on the traffic around me, while still maintaining enough attention to the road to keep the driver monitoring happy.

It was really nice. I enjoyed the ride, and it felt like I was in an Uber with a very careful driver while I enjoyed the rest of my coffee and peeked at the sky every few seconds.

Learning and Improving

A few weeks ago, I approached an “Except Right Turn” stop sign. I have discussed how these are a Pennsylvania specialty, and the first time FSD encountered one in my Model Y, it stopped, even though we were heading right.

I took over, submitted a voice memo to Tesla about it, and went on with my evening. A week later, the car approached the same turn, and, to my surprise, it proceeded through the Stop Sign correctly, safely, and at an appropriate speed.

It was nice to see this improvement, especially since this is one of those regional issues that Tesla will need to address before FSD is fully autonomous. The change even impressed my Fiancé, who was with me during both instances we came upon this turn.

Where Tesla Full Self-Driving Could Be Better

Auto Wipers

Good gravy, these Auto Wipers always seem to give me a good laugh.

They never really have the right speed; they are either way too fast or not fast enough. There’s never been a happy medium.

It also loves to activate a single wipe of the blade at the strangest times. I’ve noticed that it actually seems to activate at the same spots on the road sometimes. There’s a hanging branch near my house, and every time we go under it and FSD is activated, the wipers wipe once.

It would be nice to set your own intervals for the wipers, but I am okay with the current presets. I do hope the Auto Wipers improve, because it could be one of the best features the car has if it’s more accurate.

It Struggles with Signs That Require Reading

The “Except Right Turn” sign is one example, but another is a “Stop Here on Red” sign that is recessed from an intersection at a stop light if it’s a tighter turn. Recently, I had to slam on the brakes as it was headed straight through one of these signs.

It can recognize Stop Signs and Yield Signs, but signs with instructions for an intersection appear to present a greater challenge for FSD.

Sometimes, It Just Does Things I Don’t Like

There is a four-lane light near my house; the two right lanes go straight, but the lane furthest right is for turning into businesses past the intersection. Some people tend to go in that far right lane, even if they have no intention of turning right into the businesses, and take off quickly from the light to cut ahead.

I’m not saying it’s illegal or even wrong, but I personally prefer not to do it. I am never in that much of a hurry.

FSD tried to do that the other day; I intervened and kept it in the lane that is designed to go straight. I wouldn’t say this is technically an intervention. I would just say it’s a move I wasn’t super comfortable with because I know people tend to get frustrated with those who cut the line. It’s an etiquette issue, and I didn’t want FSD to do it.

I also am not a huge fan of when there is no traffic in the right lane, yet it continues to cruise in the fast lane. I was taught to drive in the right lane and pass in the left lane. There are states where cruising in the left lane is illegal, and it sometimes tends to stay in the passing lane too long for my liking. I will turn on my right signal and get back into the correct lane.

These are totally disputable, and I am aware of that. Some people might not see a huge issue with these two examples, and I can understand that. My courtesy on the road differs from others, and that’s okay.

All in all, I’m pretty happy with FSD, and I will be continuing my Subscription after the three-month trial ends. In the coming days, I’ll be picking up a camera for FSD videos, and I’ll be able to embed examples of what I mean, as well as share full-length videos of my drive.

Continue Reading

News

Tesla gets price target increase on Wall Street, but it’s a head-scratcher

Delaney’s price target on Tesla shares went up to $395 from $300. Currently, Tesla is trading between $420 and $430, making the new price target from Goldman Sachs a bit of a head-scratcher.

Published

on

Credit: Cybertruck | X

Tesla (NASDAQ: TSLA) received a price target increase from a Wall Street analyst today, who noted in his report that the company’s shares could rise or fall based on its execution in robotics and autonomy.

However, the price target boost still fell below Tesla’s current trading levels.

Mark Delaney of Goldman Sachs said in a note to investors today that Tesla has a significant opportunity to solidify itself as one of the stable and safe plays in the market if it can execute on its two key projects: humanoid robots and autonomy.

In the note, Delaney said:

“If Tesla can have [an] outsized share in areas such as humanoid robotics and autonomy, then there could be upside to our price target.”

Delaney’s price target on Tesla shares went up to $395 from $300. Currently, Tesla is trading between $420 and $430, making the new price target from Goldman Sachs a bit of a head-scratcher.

He went on to say that Tesla could also confront outside factors that would limit the stock’s ability to see growth, including competition and potentially its own lack of execution:

“…although if competition limits profits (as is happening with the ADAS market in China) or Tesla does not execute well, then there could be downside.”

The note is an interesting one because it seems to point out the blatantly obvious: if Tesla performs well, the stock will rise. If it doesn’t, the stock price will decline.

We discussed yesterday in an article that Tesla is one of the few stocks out there that does not seem to be influenced by financials or anything super concrete. Instead, it is more influenced by the narrative currently surrounding the company, rather than the technicals.

Tesla called ‘biggest meme stock we’ve ever seen’ by Yale associate dean

Tesla’s prowess in robotics and autonomy is strong. In robotics, it has a very good sentiment following its Optimus project, and it has shown steady improvement with subsequent versions of the robot with each release.

On the autonomy front, Tesla is expanding its Robotaxi platform in Austin every few weeks, and also has a sizeable geofence in the Bay Area. Its Full Self-Driving suite is among the most robust in the world and is incredibly useful and accurate.

The company can gain significant value if it continues to refine the platform and eventually rolls out a driverless or unsupervised version of the Full Self-Driving suite.

Continue Reading

Elon Musk

Tesla addresses door handle complaints with simple engineering fix

“We’ll have a really good solution for that. I’m not worried about it.”

Published

on

Tesla Model S self-presenting door handle
Tesla Model S self-presenting door handle (Credit: TesBros)

Tesla is going to adjust one heavily scrutinized part of its vehicles after recent government agencies have launched probes into an issue stemming from complaints from owners.

Over the past few days, we have reported on the issues with Tesla’s door handle systems from both the Chinese and American governments.

In China, it dealt with the Model S, while the United States’ National Highway Traffic Safety Administration (NHTSA) reported nine complaints from owners experiencing issues with 2021 Model Ys, as some said they had trouble entering their car after the 12V battery was low on power.

Bloomberg, in an interview with Tesla Chief Designer Franz von Holzhausen, asked whether the company planned to adjust the door handle design to alleviate any concerns that regulatory agencies might have.

Regarding the interior latch concerns in the United States:

  • Von Holzhausen said that, while a mechanical door release resolves this problem, Tesla plans to “combine the two” to help reduce stress in what he called “panic situations.”
  • He also added that “it’s in the cars now…The idea of combining the electronic and the manual one together in one button, I think, makes a lot of sense.” Franz said the muscle memory of reaching for the same button will be advantageous for children and anyone who is in an emergency.

Regarding the exterior door handle concerns in China:

  • Von Holzhausen said Tesla is reviewing the details of the regulation and confirmed, “We’ll have a really good solution for that. I’m not worried about it.”

The new Model Y already has emergency mechanical door release latches in the back, but combining them in future vehicles seems to be an ideal solution for other vehicles in Tesla’s lineup.

It will likely help Tesla avoid complaints from owners about not having an out in the event of a power outage or accident. It is a small engineering change that could be extremely valuable for future instances.

Continue Reading

Trending