Connect with us

News

SpaceX tops off Starship launch tower during Blue Origin crew launch briefing

SpaceX Starship tower stacking versus Blue Origin's suborbital New Shepard tourism rocket. (NASASpaceflight - bocachicagal / Blue Origin)

Published

on

On Sunday morning, SpaceX began the process of installing the last prefabricated section of Starship’s skyscraper-sized ‘launch tower’ around the same time as startup Blue Origin kicked off a preflight briefing for its first crewed suborbital launch.

Though both events are almost entirely unconnected and have no immediate impact on each other, the simultaneity almost immediately triggered comparisons between one of the most important media briefings in Blue Origin’s 21-year history and an average busy day at SpaceX’s South Texas Starship factory and launch site. Almost exclusively funded by Amazon founder and CEO Jeff Bezos since it was founded in September 2000, around two years before SpaceX, Blue Origin is on the cusp of its first crewed launch less than two weeks after Virgin Galactic completed its first fully-crewed test flight above 80 km (~50 mi).

Approximately 600 miles southeast of Blue Origin’s Van Horn, Texas launch and test facilities, in a different corner of the vast state, SpaceX was preparing for the latest in a long line of steps towards the completion of an orbital launch site for Starship – potentially the first fully reusable orbital rocket ever built.

First revealed more than three months ago in a cryptic post from owner Jeff Bezos, Blue Origin is scheduled to launch passengers on its New Shepard rocket for the first time ever, marking the end of an extraordinarily long development period. Designed to be fully reusable, New Shepard is a small single-stage rocket powered by one liquid hydrogen and oxygen-fueled BE-3 engine capable of producing approximately 500 kN (110,000 lbf) of thrust at liftoff. Designed exclusively for the purpose of ferrying a few tourists above a mostly arbitrary 100 km (~62 mi) line separating Earth’s atmosphere and “space,” New Shepard is about the same diameter as SpaceX’s Falcon 9 and Falcon Heavy rockets but is just 15m (~50 ft) tall.

Advertisement

The small rocket launched for the first time in April 2015 and reached an apogee of ~94 km but instability ultimately destroyed the first New Shepard booster during its first landing attempt. Blue Origin successfully launched and landed New Shepard on its next test flight in November 2015, culminating in Bezos’ infamous “Welcome to the club!” comment after SpaceX successfully recovered a Falcon 9 booster for the first time one month later.

As of July 2021, Blue Origin has completed just 15 New Shepard test flights – 14 of which were fully successful – in six years. In the same period, SpaceX successfully recovered an orbital-class Falcon 9 booster for the first time, reused a Falcon booster on a commercial satellite launch, debuted Falcon Heavy, reused several orbital Cargo Dragon capsules three times each, debuted Crew Dragon, became the first company in history to launch astronauts, completed its first operational astronaut launch for NASA, hopped three Starship prototypes, flew five Starship prototypes to 10-15 km, successfully landed four Raptor-powered Starship prototypes, rolled out Starship’s first completed booster prototype, completed more than 100 successful orbital launches, flown the same Falcon 9 booster ten times (versus New Shepard’s record of seven flights), reused orbital-class boosters 68 times, created the world’s largest satellite constellation, and far, far more.

Along those lines, on Saturday, July 17th, SpaceX teams attached a massive crane to the seventh prefabricated section of a ‘launch tower’ that could eventually support Starship and Super Heavy stacking – and maybe even catch ships and boosters. On Sunday, not long after daybreak and about an hour before Blue Origin’s New Shepard-16 preflight briefing, that tower section lifted off under the watchful eye of several unofficial cameras operated by NASASpaceflight, LabPadre, and others. By the end of Blue Origin’s briefing, most of which involved executives or senior employees reading from scripts and none of which offered a look at actual flight hardware or “astronaut” preparations, the eighth launch tower section was mostly in place, creating a structure some 135m (~440 ft) tall.

By the end of NASASpaceflight.com’s unofficial six-hour stream, the outlet’s excellent and unaffiliated coverage of SpaceX erecting part of a relatively simple tower for the seventh time had been viewed more than a quarter of a million times. By the end of Blue Origin’s official preflight briefing for a crewed launch set to carry the richest person on Earth, the company had accrued around 20,000 views on YouTube.

Advertisement

Some might see ten times as many viewers flocking to an unofficial live stream of fairly mundane SpaceX construction over a briefing for the first crewed launch of a fully-reusable suborbital rocket and scoff. For those who watched both broadcasts, it’s likely less than shocking that spaceflight and rocket fans almost universally sided with a livestream showing something – anything! – happening over what amounted to a camera pointed at five people reading (mostly stale) statements off of teleprompters.

Barely 24 hours away from Blue Origin’s most significant launch ever, the company – save for a few low-res clips from Jeff Bezos – has yet to share a single new piece of media highlighting the mission’s actual New Shepard rocket, crew capsule, astronaut preparations, flight suits, launch pad, or any of the other dozens of things most spaceflight fans – and people in general – tend to get excited about. For whatever reason, Blue Origin has also worked with Texas to shut down the only quasi-public viewing area less than 10-20 miles away from New Shepard’s launch pad despite never having done so in 15 test flights.

SpaceX, on the other hand, may not have always been a perfect neighbor in Boca Chica but the company has mostly accepted the buzzing, near-continuous presence of spaceflight fans and members of the media who come to South Texas to see Starbase in person. More recently, SpaceX has actively let at least two media outlets (NASASpaceflight and LabPadre) install and operate several robotic cameras overlooking Boca Chica’s Starship factory and pad.

It’s impossible to condense it into one or two simple differences but it’s safe to say that SpaceX’s relative openness and a general willingness to engage with media and let public excitement and interest grow uninterrupted (when possible) is part of the reason that mundane SpaceX goings-on can accumulate a magnitude more interest on unofficial channels than an official briefing for the most important event in Blue Origin’s history.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading