News
SpaceX tops off Starship launch tower during Blue Origin crew launch briefing
On Sunday morning, SpaceX began the process of installing the last prefabricated section of Starship’s skyscraper-sized ‘launch tower’ around the same time as startup Blue Origin kicked off a preflight briefing for its first crewed suborbital launch.
Though both events are almost entirely unconnected and have no immediate impact on each other, the simultaneity almost immediately triggered comparisons between one of the most important media briefings in Blue Origin’s 21-year history and an average busy day at SpaceX’s South Texas Starship factory and launch site. Almost exclusively funded by Amazon founder and CEO Jeff Bezos since it was founded in September 2000, around two years before SpaceX, Blue Origin is on the cusp of its first crewed launch less than two weeks after Virgin Galactic completed its first fully-crewed test flight above 80 km (~50 mi).
Approximately 600 miles southeast of Blue Origin’s Van Horn, Texas launch and test facilities, in a different corner of the vast state, SpaceX was preparing for the latest in a long line of steps towards the completion of an orbital launch site for Starship – potentially the first fully reusable orbital rocket ever built.
First revealed more than three months ago in a cryptic post from owner Jeff Bezos, Blue Origin is scheduled to launch passengers on its New Shepard rocket for the first time ever, marking the end of an extraordinarily long development period. Designed to be fully reusable, New Shepard is a small single-stage rocket powered by one liquid hydrogen and oxygen-fueled BE-3 engine capable of producing approximately 500 kN (110,000 lbf) of thrust at liftoff. Designed exclusively for the purpose of ferrying a few tourists above a mostly arbitrary 100 km (~62 mi) line separating Earth’s atmosphere and “space,” New Shepard is about the same diameter as SpaceX’s Falcon 9 and Falcon Heavy rockets but is just 15m (~50 ft) tall.
The small rocket launched for the first time in April 2015 and reached an apogee of ~94 km but instability ultimately destroyed the first New Shepard booster during its first landing attempt. Blue Origin successfully launched and landed New Shepard on its next test flight in November 2015, culminating in Bezos’ infamous “Welcome to the club!” comment after SpaceX successfully recovered a Falcon 9 booster for the first time one month later.
As of July 2021, Blue Origin has completed just 15 New Shepard test flights – 14 of which were fully successful – in six years. In the same period, SpaceX successfully recovered an orbital-class Falcon 9 booster for the first time, reused a Falcon booster on a commercial satellite launch, debuted Falcon Heavy, reused several orbital Cargo Dragon capsules three times each, debuted Crew Dragon, became the first company in history to launch astronauts, completed its first operational astronaut launch for NASA, hopped three Starship prototypes, flew five Starship prototypes to 10-15 km, successfully landed four Raptor-powered Starship prototypes, rolled out Starship’s first completed booster prototype, completed more than 100 successful orbital launches, flown the same Falcon 9 booster ten times (versus New Shepard’s record of seven flights), reused orbital-class boosters 68 times, created the world’s largest satellite constellation, and far, far more.
Along those lines, on Saturday, July 17th, SpaceX teams attached a massive crane to the seventh prefabricated section of a ‘launch tower’ that could eventually support Starship and Super Heavy stacking – and maybe even catch ships and boosters. On Sunday, not long after daybreak and about an hour before Blue Origin’s New Shepard-16 preflight briefing, that tower section lifted off under the watchful eye of several unofficial cameras operated by NASASpaceflight, LabPadre, and others. By the end of Blue Origin’s briefing, most of which involved executives or senior employees reading from scripts and none of which offered a look at actual flight hardware or “astronaut” preparations, the eighth launch tower section was mostly in place, creating a structure some 135m (~440 ft) tall.
By the end of NASASpaceflight.com’s unofficial six-hour stream, the outlet’s excellent and unaffiliated coverage of SpaceX erecting part of a relatively simple tower for the seventh time had been viewed more than a quarter of a million times. By the end of Blue Origin’s official preflight briefing for a crewed launch set to carry the richest person on Earth, the company had accrued around 20,000 views on YouTube.
Some might see ten times as many viewers flocking to an unofficial live stream of fairly mundane SpaceX construction over a briefing for the first crewed launch of a fully-reusable suborbital rocket and scoff. For those who watched both broadcasts, it’s likely less than shocking that spaceflight and rocket fans almost universally sided with a livestream showing something – anything! – happening over what amounted to a camera pointed at five people reading (mostly stale) statements off of teleprompters.
Barely 24 hours away from Blue Origin’s most significant launch ever, the company – save for a few low-res clips from Jeff Bezos – has yet to share a single new piece of media highlighting the mission’s actual New Shepard rocket, crew capsule, astronaut preparations, flight suits, launch pad, or any of the other dozens of things most spaceflight fans – and people in general – tend to get excited about. For whatever reason, Blue Origin has also worked with Texas to shut down the only quasi-public viewing area less than 10-20 miles away from New Shepard’s launch pad despite never having done so in 15 test flights.
SpaceX, on the other hand, may not have always been a perfect neighbor in Boca Chica but the company has mostly accepted the buzzing, near-continuous presence of spaceflight fans and members of the media who come to South Texas to see Starbase in person. More recently, SpaceX has actively let at least two media outlets (NASASpaceflight and LabPadre) install and operate several robotic cameras overlooking Boca Chica’s Starship factory and pad.
It’s impossible to condense it into one or two simple differences but it’s safe to say that SpaceX’s relative openness and a general willingness to engage with media and let public excitement and interest grow uninterrupted (when possible) is part of the reason that mundane SpaceX goings-on can accumulate a magnitude more interest on unofficial channels than an official briefing for the most important event in Blue Origin’s history.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.