Connect with us

News

SpaceX Super Heavy booster assembly to start “this week,” says Elon Musk

Elon Musk says that SpaceX is just days away from starting production of the first Super Heavy booster. (SpaceX)

Published

on

CEO Elon Musk says that SpaceX is on track to begin fabricating Starship’s first Super Heavy booster prototype later “this week” and even revealed plans to hop that booster in the very near future.

Taller than an entire two-stage Falcon 9 or Falcon Heavy rocket, Super Heavy will be the largest and most powerful liquid rocket booster ever built by a factor of two (or more). Measuring ~70m (~230 ft) tall, Super Heavy will weigh at least 3500 metric tons (7.7 million lb) when fully loaded with liquid oxygen and methane propellant. According to Musk, SpaceX’s thrust target for the booster is 7500 tons (~16.5 million lbf) – significantly more than twice the thrust of the Saturn V and Soviet N-1 rockets and more than three times the thrust of SpaceX’s own Falcon Heavy.

On paper, while multiple times larger and more powerful, Super Heavy will be substantially simpler than Falcon Heavy thanks to its single-core. Built out of the same simple steel rings used to assemble Starship prototypes, Super Heavy should also be substantially cheaper to build than Falcon Heavy. Thanks to the experience SpaceX has already gained through months of Starship production, testing, and iterative improvement, initial Super Heavy prototype production could have a much smoother start, but several major challenges remain.

Elon Musk says that SpaceX is just days away from starting production of the first Super Heavy booster. (SpaceX)

SpaceX has structured its Starship development program in such a way that the hardest technical challenges are generally first in line. Raptor engine testing came first in September 2016, although SpaceX did simultaneously build and test a full-scale carbon composite liquid oxygen – a material choice that was ultimately made redundant by the move to steel in late 2018. Up next, Starhopper served as a sort of proof of concept for the assembly of a flightworthy steel rocket in an unprotected open-air tent.

Starship Mk1 came next and was built as a full-scale prototype in similarly spartan conditions – but with much thinner steel. Mk1 ultimately failed prematurely, serving as a catalyst for SpaceX to substantially upgrade its South Texas rocket production capabilities, as well as its manufacturing techniques. Beginning in January 2020, SpaceX completed a rapid-fire series of tests with three stout tank prototypes and five full-scale Starship tank sections over the next seven months, passing multiple challenging pressure tests, wet dress rehearsals, Raptor static fires, and even a 150m (500 ft) hop.

The biggest challenges still facing Starship (5+ minute Raptor burns, skydiver-style landings, heat shield qualification, orbital launch/reentry/reuse) are mostly unique to the orbital spacecraft. In other words, with all SpaceX has already accomplished so far with Starship development, it could very well be ready to build a fully-capable Super Heavy prototype right now.

Along those lines, Musk says that there’s a chance that SpaceX will be ready to hop a Super Heavy booster prototype as early as October 2020 – less than two months after the first prototype enters production. Musk also noted that the biggest technical challenge facing Super Heavy is its extraordinarily complex ‘thrust puck’ – a metal structure that must host up to 28 Raptor engines and transfer all of their thrust through the rest of the rocket.

Per past comments, SpaceX will begin booster testing – possibly up to and including the first few orbital launch attempts – with as few Raptor engines as possible. For Musk’s aforementioned booster hop test, Super Heavy could reportedly hop with as few as two Raptors installed. Beyond those early tests and Super Heavy thrust puck development, perhaps only other challenge facing SpaceX is finalizing Raptor’s design to the point that dozens of engines can be built in short order. As of now, SpaceX has completed 40 Raptor prototypes in 18 months, while every Starship/Super Heavy pair will need as many as 34 engines apiece.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s Boring Company opens Vegas Loop’s newest station

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Published

on

Credit: The Boring Company/X

Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Fontainebleau Loop station

The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.

The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.

Vegas Loop expansion

In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.

Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.

The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.

Continue Reading

News

Tesla leases new 108k-sq ft R&D facility near Fremont Factory

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

Published

on

Credit: Tesla

Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay. 

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

A new Fremont lease

Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.

As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.

Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.

AI investments

Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.

Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.

Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.

Advertisement
Continue Reading

News

Tesla winter weather test: How long does it take to melt 8 inches of snow?

Published

on

Credit: Teslarati

In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.

I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?

Tesla Model Y Performance set for new market entrance in Q1

Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.

It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.

The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.

Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown

Observations

I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.

I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.

The rest of the test was sitting and waiting.

It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.

However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.

It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.

Check out the video of the test below:

Continue Reading