News
SpaceX Super Heavy booster assembly to start “this week,” says Elon Musk
CEO Elon Musk says that SpaceX is on track to begin fabricating Starship’s first Super Heavy booster prototype later “this week” and even revealed plans to hop that booster in the very near future.
Taller than an entire two-stage Falcon 9 or Falcon Heavy rocket, Super Heavy will be the largest and most powerful liquid rocket booster ever built by a factor of two (or more). Measuring ~70m (~230 ft) tall, Super Heavy will weigh at least 3500 metric tons (7.7 million lb) when fully loaded with liquid oxygen and methane propellant. According to Musk, SpaceX’s thrust target for the booster is 7500 tons (~16.5 million lbf) – significantly more than twice the thrust of the Saturn V and Soviet N-1 rockets and more than three times the thrust of SpaceX’s own Falcon Heavy.
On paper, while multiple times larger and more powerful, Super Heavy will be substantially simpler than Falcon Heavy thanks to its single-core. Built out of the same simple steel rings used to assemble Starship prototypes, Super Heavy should also be substantially cheaper to build than Falcon Heavy. Thanks to the experience SpaceX has already gained through months of Starship production, testing, and iterative improvement, initial Super Heavy prototype production could have a much smoother start, but several major challenges remain.

SpaceX has structured its Starship development program in such a way that the hardest technical challenges are generally first in line. Raptor engine testing came first in September 2016, although SpaceX did simultaneously build and test a full-scale carbon composite liquid oxygen – a material choice that was ultimately made redundant by the move to steel in late 2018. Up next, Starhopper served as a sort of proof of concept for the assembly of a flightworthy steel rocket in an unprotected open-air tent.
Starship Mk1 came next and was built as a full-scale prototype in similarly spartan conditions – but with much thinner steel. Mk1 ultimately failed prematurely, serving as a catalyst for SpaceX to substantially upgrade its South Texas rocket production capabilities, as well as its manufacturing techniques. Beginning in January 2020, SpaceX completed a rapid-fire series of tests with three stout tank prototypes and five full-scale Starship tank sections over the next seven months, passing multiple challenging pressure tests, wet dress rehearsals, Raptor static fires, and even a 150m (500 ft) hop.
The biggest challenges still facing Starship (5+ minute Raptor burns, skydiver-style landings, heat shield qualification, orbital launch/reentry/reuse) are mostly unique to the orbital spacecraft. In other words, with all SpaceX has already accomplished so far with Starship development, it could very well be ready to build a fully-capable Super Heavy prototype right now.
Along those lines, Musk says that there’s a chance that SpaceX will be ready to hop a Super Heavy booster prototype as early as October 2020 – less than two months after the first prototype enters production. Musk also noted that the biggest technical challenge facing Super Heavy is its extraordinarily complex ‘thrust puck’ – a metal structure that must host up to 28 Raptor engines and transfer all of their thrust through the rest of the rocket.
Per past comments, SpaceX will begin booster testing – possibly up to and including the first few orbital launch attempts – with as few Raptor engines as possible. For Musk’s aforementioned booster hop test, Super Heavy could reportedly hop with as few as two Raptors installed. Beyond those early tests and Super Heavy thrust puck development, perhaps only other challenge facing SpaceX is finalizing Raptor’s design to the point that dozens of engines can be built in short order. As of now, SpaceX has completed 40 Raptor prototypes in 18 months, while every Starship/Super Heavy pair will need as many as 34 engines apiece.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.
The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil.
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.
xAI Integration
As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.
“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release.
Strategic advantages
The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.
“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.
News
Tesla FSD (Supervised) v14.2.2 starts rolling out
The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Key FSD v14.2.2 improvements
As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.
Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.
FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.
Key FSD v14.2.2 release notes
Full Self-Driving (Supervised) v14.2.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
- Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
- Camera visibility can lead to increased attention monitoring sensitivity.
Upcoming Improvements:
- Overall smoothness and sentience.
- Parking spot selection and parking quality.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.