News
SpaceX Super Heavy booster assembly to start “this week,” says Elon Musk
CEO Elon Musk says that SpaceX is on track to begin fabricating Starship’s first Super Heavy booster prototype later “this week” and even revealed plans to hop that booster in the very near future.
Taller than an entire two-stage Falcon 9 or Falcon Heavy rocket, Super Heavy will be the largest and most powerful liquid rocket booster ever built by a factor of two (or more). Measuring ~70m (~230 ft) tall, Super Heavy will weigh at least 3500 metric tons (7.7 million lb) when fully loaded with liquid oxygen and methane propellant. According to Musk, SpaceX’s thrust target for the booster is 7500 tons (~16.5 million lbf) – significantly more than twice the thrust of the Saturn V and Soviet N-1 rockets and more than three times the thrust of SpaceX’s own Falcon Heavy.
On paper, while multiple times larger and more powerful, Super Heavy will be substantially simpler than Falcon Heavy thanks to its single-core. Built out of the same simple steel rings used to assemble Starship prototypes, Super Heavy should also be substantially cheaper to build than Falcon Heavy. Thanks to the experience SpaceX has already gained through months of Starship production, testing, and iterative improvement, initial Super Heavy prototype production could have a much smoother start, but several major challenges remain.

SpaceX has structured its Starship development program in such a way that the hardest technical challenges are generally first in line. Raptor engine testing came first in September 2016, although SpaceX did simultaneously build and test a full-scale carbon composite liquid oxygen – a material choice that was ultimately made redundant by the move to steel in late 2018. Up next, Starhopper served as a sort of proof of concept for the assembly of a flightworthy steel rocket in an unprotected open-air tent.
Starship Mk1 came next and was built as a full-scale prototype in similarly spartan conditions – but with much thinner steel. Mk1 ultimately failed prematurely, serving as a catalyst for SpaceX to substantially upgrade its South Texas rocket production capabilities, as well as its manufacturing techniques. Beginning in January 2020, SpaceX completed a rapid-fire series of tests with three stout tank prototypes and five full-scale Starship tank sections over the next seven months, passing multiple challenging pressure tests, wet dress rehearsals, Raptor static fires, and even a 150m (500 ft) hop.
The biggest challenges still facing Starship (5+ minute Raptor burns, skydiver-style landings, heat shield qualification, orbital launch/reentry/reuse) are mostly unique to the orbital spacecraft. In other words, with all SpaceX has already accomplished so far with Starship development, it could very well be ready to build a fully-capable Super Heavy prototype right now.
Along those lines, Musk says that there’s a chance that SpaceX will be ready to hop a Super Heavy booster prototype as early as October 2020 – less than two months after the first prototype enters production. Musk also noted that the biggest technical challenge facing Super Heavy is its extraordinarily complex ‘thrust puck’ – a metal structure that must host up to 28 Raptor engines and transfer all of their thrust through the rest of the rocket.
Per past comments, SpaceX will begin booster testing – possibly up to and including the first few orbital launch attempts – with as few Raptor engines as possible. For Musk’s aforementioned booster hop test, Super Heavy could reportedly hop with as few as two Raptors installed. Beyond those early tests and Super Heavy thrust puck development, perhaps only other challenge facing SpaceX is finalizing Raptor’s design to the point that dozens of engines can be built in short order. As of now, SpaceX has completed 40 Raptor prototypes in 18 months, while every Starship/Super Heavy pair will need as many as 34 engines apiece.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.