Connect with us

News

SpaceX Super Heavy booster reaches full height as Elon Musk talks orbit

Super Heavy booster B3 reached its full height on June 29th. (NASASpaceflight - bocachicagal)

Published

on

Just a few days after CEO Elon Musk said that SpaceX’s first true Super Heavy prototype was “almost done,” the booster has been stacked to its full height.

Standing more than 65 meters (~215 ft) tall, Super Heavy Booster 3 (B3) assembly is now just a few major welds away from completion after SpaceX teams mated the final two sections of its propellant tanks and structure. Assembled separately out of approximately 12 barrel sections each made up of 2-4 steel rings, Booster 3’s methane tank (13 rings) and oxygen tank (23 rings) were stacked together on June 29th, just over six weeks after the process began.

Earlier the same day, speaking at the 2021 Mobile World Congress, Musk confirmed what was now fairly clear to most observers, stating that SpaceX is “going to do its best” to complete Starship’s first orbital (or, at least, space) launch attempt “in the next few months.” In other words, a several-month-old launch target of no later than July 2021 is most likely out of reach despite a strong effort from SpaceX.

The most significant technical hurdles still in the way involve a few incremental Starship milestones and, more importantly, the qualification of the largest and most powerful rocket booster ever built. Standing almost as tall as an entire two-stage Falcon 9 or Falcon Heavy, Super Heavy is expected to weigh more than 3500 tons (~7.7 million lbs) and produce at least ~5000 tons (~11 million lbf) of thrust at liftoff – more than any other rocket booster in history, liquid or solid.

Borrowing heavily from Starship, Super Heavy is mostly built with the same techniques out of the same steel rings, stringers, and structures, save for a few booster-specific components. However, Super Heavy is also designed to use 29-32 Raptor engines while the most SpaceX has ever simultaneously installed, tested, or flown is three. In other words, while Super Heavy is in many ways simpler than Starship, it will still be treading plenty of new ground when it heads to the launch pad for the first time.

Advertisement
-->
Booster 3 is sporting a mysterious and sturdy bracket-like structure holding a pressure vessel and some kind of plumbing. (NASASpaceflight – bocachicagal)
Former Starship Suborbital Mount A has been modified for booster testing. (NASASpaceflight – bocachicagal)

Plenty of final integration tasks remain before Super Heavy B3 will be ready to start qualification testing but SpaceX could feasibly be ready to roll the booster to the launch site within the next week or two. Once installed on a former Starship launch mount that’s been customized for booster testing, Super Heavy will likely be put through its first cryogenic proof and static fire test(s) to verify that the massive rocket is performing as expected. The static fire process could be fairly lengthy if SpaceX decides to incrementally increase the number of Raptor engines installed.

In the likely event that Booster 3 begins testing without engines installed, SpaceX will also have to go through the process of installing up to 29 Raptors while Super Heavy is sitting out in the elements on a launch mount. Based on experience with Starship, installing that many engines in situ could take at least several days – and maybe longer. All told, the fun is only just beginning.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading

News

Tesla supplier Samsung preps for AI5 production with latest move

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team.

Published

on

Credit: Tesla

Tesla supplier Samsung is preparing to manufacture the AI5 chip, which will launch the company’s self-driving efforts even further, with its latest move.

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team, which will help resolve complex foundry challenges, stabilize production and yields, and ensure manufacturing goes smoothly for the new project.

The hiring push signals that Tesla’s AI5 project is moving forward quickly at Samsung, which was one of two suppliers to win a contract order from the world’s leading EV maker.

TSMC is the other. TSMC is using its 3nm process, reportedly, while Samsung will do a 2nm as a litmus test for the process.

The different versions are due to the fact that “they translate designs to physical form differently,” CEO Elon Musk said recently. The goal is for the two to operate identically, obviously, which is a challenge.

Some might remember Apple’s A9 “Chipgate” saga, which found that the chips differed in performance because of different manufacturers.

The AI5 chip is Tesla’s next-generation hardware chip for its self-driving program, but it will also contribute to the Optimus program and other AI-driven features in both vehicles and other projects. Currently, Tesla utilizes AI4, formerly known as HW4 or Hardware 4, in its vehicles.

Tesla teases new AI5 chip that will revolutionize self-driving

AI5 is specialized for use by Tesla as it will work in conjunction with the company’s Neural Networks, focusing on real-time inference to make safe and logical decisions during operation.

Musk said it was an “amazing design” and an “immense jump” from Tesla’s current AI4 chip. It will be roughly 40 times faster, and have 8 times the raw compute, with 9 times the memory capacity. It is also expected to be three times as efficient per watt as AI4.

AI5 will make its way into “maybe a small number of units” next year, Musk confirmed. However, it will not make its way to high-volume production until 2027. AI5 is not the last step, either, as Musk has already confirmed AI6 would likely enter production in mid-2028.

Continue Reading

News

Tesla discloses interesting collaboration partner for Supercharging

This BOXABL collaboration would be a great way to add a rest stop to a rural Supercharging location, and could lead to more of these chargers across the U.S. 

Published

on

Credit: Grok

Tesla disclosed an interesting collaboration partner in an SEC filing, which looks like an indication of a potential project at Supercharger sites.

Tesla said on Tuesday in the filing that it was entering an agreement with BOXABL to design and build a Micromenity structure. Simply put, this is a modular building, usually a few hundred square feet in size, and it has been seen at Superchargers in Europe.

In Magnant, France, Tesla opened a small building at a Supercharger that is available to all EV owners. There are snacks and drinks inside, including ice cream, coffee, a gaming console, and restrooms. It gives people an opportunity to get up and out of their cars while charging.

This building was not built by BOXABL, but instead by bk World Lounges. It is likely the final Supercharging stop before people get to Paris, as it is located 250 kilometers, or 155 miles, from the City of Light.

 

Voir cette publication sur Instagram

 

Une publication partagée par Gerold Wolfarth (@gerold_wolfarth)

Magnant has 56 stalls, so it is a large Supercharging stop compared to most. The building could be a sign of things to come, especially as Tesla has opened up larger Supercharger stations along major roadways.

It is for just a single building, as the Scope of Work within the filing states “a comprehensive package for one Micromenity building.”

Superchargers are commonly located at gas stations, shopping centers, and other major points of interest. However, there are some stops that are isolated from retail or entertainment.

This BOXABL collaboration would be a great way to add a rest stop to a rural Supercharging location, and could lead to more of these chargers across the U.S.

Tesla has done a lot of really great things for Supercharging this year.

Along with widespread expansion, the company launched the “Charging Passport” this week, opened the largest Supercharger in the world in Lost Hills, California, with 168 chargers, opened the Tesla Diner, a drive-in movie restaurant in Los Angeles, and initiated access to the infrastructure to even more automakers.

Continue Reading