Connect with us

News

A SpaceX surprise: Falcon Heavy booster landing to smash distance record

Falcon Heavy center core B1055 landed aboard drone ship OCISLY nearly 970 km (600 mi) off the coast of Florida. Center core B1057 could smash that record by almost 30% on June 24th. (SpaceX)

Published

on

In an unexpected last-second change, SpaceX has moved Falcon Heavy Flight 3’s center core landing on drone ship Of Course I Still Love You (OCISLY) from 40 km to more than 1240 km (770 mi) off the coast of Florida.

Drone ship OCISLY is already being towed to the landing site, necessary due to the sheer distance that needs to be covered at a leisurely towing pace. The current record for distance traveled during booster recovery was set at ~970 km by Falcon Heavy center core B1055 in April 2019. If successful, Falcon Heavy center core B1057 will smash that record by almost 30% after sending two dozen spacecraft on their way to orbit. Falcon Heavy Flight 3 is scheduled to lift off in support of the Department of Defense’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. A routine static fire test at Pad 39A will (hopefully) set the stage for launch on Wednesday, June 19th.

This comes as a significant surprise for several reasons. First and foremost, the difference between a center core landing 40 km or 1300 km from the launch site is immense. For Falcon Heavy, the center core shuts down and separates from the rest of the rocket as much as a minute after the rocket’s two side boosters, potentially doubling the booster’s relative velocity at separation.

USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)
A return to launch site (RTLS) booster recovery requires a ton of latent performance, particularly for a booster traveling as fast as a Falcon Heavy center core. (USAF – James Rainier)

That extra minute of acceleration means that the center core can easily be 50-100+ km downrange at the point of separation. In other words, landing 40 km offshore aboard drone ship OCISLY would be roughly akin to a full boostback burn, meaning that the center core would need to nullify all of its substantial downrange velocity, turn around, and fly ~50-100 km back towards the launch site. Being able to perform such an aggressive maneuver would indicate that Falcon Heavy’s boost stage has a huge amount of propellant (delta V) remaining after completing its role in the launch.

To have STP-2’s center core recovery moved from 40 km to 1240 km thus indicates an absolutely massive change in the rocket’s mission plan and launch trajectory. For reference, Falcon Heavy Flight 2’s Block 5 center core (B1055) set SpaceX’s current record for recovery distance (970 km/600 mi) after launching Arabsat 6A – a massive ~6500 kg (14,300 lb) satellite – to a spectacularly high transfer orbit of >90,000 km (56,000 mi).

Why so spicy?

There are three obvious possibilities that might help explain why the STP-2 mission has abruptly indicated that it will require SpaceX’s most energetic booster recovery yet.

1. STP-2 is carrying at least 1-2 metric tons worth of mystery payload(s)

This is highly unlikely. The USAF SMC has already released a SpaceX photo showing the late stages of the STP-2 payload stack’s encapsulation inside Falcon Heavy’s payload fairing. Short of an elaborate faked encapsulation followed by the installation of additional mysterious spacecraft or some extremely dense hardware hidden inside, it’s safe to say that the STP-2 payload stack weighs what the USAF says it weighs, which is to say not nearly heavy enough to warrant a record-smashing booster recovery given the known orbital destinations.

The USAF further confirmed that there is no ballast on the stack, removing the possibility of a lead weight or steel boilerplate meant to artificially push Falcon Heavy to its limits.

Advertisement

2. STP-2’s already-challenging Falcon upper stage mission profile is even more exotic than described

Per official mission overviews, it’s already clear that STP-2 could be the most challenging launch ever attempted for SpaceX’s orbital Falcon upper stage. According to SpaceX itself, “STP-2…will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”

An overview of the STP-2 Falcon Heavy upper stage’s exotic and extremely challenging mission profile. (USAF)

While undeniably challenging, it’s not clear why it would require such a high-energy center core recovery. With a payload mass of just ~3700 kg, Falcon 9 has launched much larger payloads to (relatively) higher orbits, but this fails to account for the added challenge of long coasts and multiple different orbits. Also of note, the above graph (courtesy of a years-old USAF document) appears to disagree with SpaceX’s description of “four… upper-stage burns”, instead showing five burns (red spikes).

More likely than not, OCISLY’s ~1200-kilometer move can be explained largely by the reintroduction of what the above graph describes as the Falcon upper stage’s “disposal burn”, likely referring to a deorbit burn. On top of the delta V already required for the first four burns, it isn’t out of the question that an additional coast and deorbit burn from 6000 km (3700 mi) would push the recovery equation in favor of attempting to incinerate center core B1057.

Falcon Heavy’s upper stage deploys its payload fairing, revealing the STP-2 payload stack. (SpaceX)

3. USAF/DoD conservatism strikes again?

The last plausible explanation for this radical shift is that the US Air Force/Department of Defense (DoD) has decided last-second that they want more margins on top of their already-overflowing safety margins, quite literally pushing B1057 to the edge of its performance envelope to mitigate low-probability failure modes. This has been done to an even more extreme extent with the US Air Force’s recent GPS III SV01 launch, in which SpaceX was forced to expend a new Falcon 9 Block 5 booster to provide the extreme safety margins the USAF desired.

According to the USAF, the STP-2 mission – including launch costs – represents as much as $750M, coincidentally similar to the estimated cost of the GPS III SV01 satellite and an expendable Falcon 9 rocket. As such, it’s not out of the question that a similar level of paranoia/conservatism is in play for STP-2.

Falcon 9 lifts off with the US Air Force’s first ~$500M GPS III spacecraft, December 2018. (SpaceX)

Numbers 2 and 3 are equally plausible explanations for this last-second booster recovery shift. Given the US military’s active involvement, it’s more likely than not that no explanations will be offered. Regardless, this surprise development is bound to result in a truly spectacular recovery attempt for SpaceX’s second Block 5 center core and will likely involve breaking several still-fresh records in the process.

Falcon Heavy Flight 3 is in the middle of rolling out to SpaceX’s Kennedy Space Center Pad 39A launch facilities for a routine pre-launch static fire test, scheduled to occur no earlier than 12:30 pm ET (16:30 UTC), June 19th. If all goes well, SpaceX should be on track for its first STP-2 launch attempt at 11:30 pm ET (03:30 UTC), June 24th.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi’s biggest rival sends latest statement with big expansion

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

Published

on

Credit: @AdanGuajardo/X

Tesla Robotaxi’s biggest rival sent its latest statement earlier this month by making a big expansion to its geofence, pushing the limits up by over 50 percent and nearing Tesla’s size.

Waymo announced earlier this month that it was expanding its geofence in Austin by slightly over 50 percent, now servicing an area of 140 square miles, over the previous 90 square miles that it has been operating in since July 2025.

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

These rides are fully driverless, which sets them apart from Tesla slightly. Tesla operates its Robotaxi program in Austin with a Safety Monitor in the passenger’s seat on local roads and in the driver’s seat for highway routes.

It has also tested fully driverless Robotaxi services internally in recent weeks, hoping to remove Safety Monitors in the near future, after hoping to do so by the end of 2025.

Although Waymo’s geofence has expanded considerably, it still falls short of Tesla’s by roughly 31 square miles, as the company’s expansion back in late 2025 put it up to roughly 171 square miles.

There are several differences between the two operations apart from the size of the geofence and the fact that Waymo is able to operate autonomously.

Waymo emphasizes mature, fully autonomous operations in a denser but smaller area, while Tesla focuses on more extensive coverage and fleet scaling potential, especially with the potential release of Cybercab and a recently reached milestone of 200 Robotaxis in its fleet across Austin and the Bay Area.

However, the two companies are striving to achieve the same goal, which is expanding the availability of driverless ride-sharing options across the United States, starting with large cities like Austin and the San Francisco Bay Area. Waymo also operates in other cities, like Las Vegas, Los Angeles, Orlando, Phoenix, and Atlanta, among others.

Tesla is working to expand to more cities as well, and is hoping to launch in Miami, Houston, Phoenix, Las Vegas, and Dallas.

Continue Reading

Elon Musk

Tesla automotive will be forgotten, but not in a bad way: investor

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

Published

on

(Credit: Tesla)

Entrepreneur and Angel investor Jason Calacanis believes that Tesla will one day be only a shade of how it is recognized now, as its automotive side will essentially be forgotten, but not in a bad way.

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

I subscribed to Tesla Full Self-Driving after four free months: here’s why

Eventually, and even now, the focus has been on real-world AI and Robotics, both through the Full Self-Driving and autonomy projects that Tesla has been working on, as well as the Optimus program, which is what Calacanis believes will be the big disruptor of the company’s automotive division.

On the All-In podcast, Calcanis revealed he had visited Tesla’s Optimus lab earlier this month, where he was able to review the Optimus Gen 3 prototype and watch teams of engineers chip away at developing what CEO Elon Musk has said will be the big product that will drive the company even further into the next few decades.

Calacanis said:

“Nobody will remember that Tesla ever made a car. They will only remember the Optimus.”

He added that Musk “is going to make a billion of those.”

Musk has stated this point himself, too. He at one point said that he predicted that “Optimus will be the biggest product of all-time by far. Nothing will even be close. I think it’ll be 10 times bigger than the next biggest product ever made.”

He has also indicated that he believes 80 percent of Tesla’s value will be Optimus.

Optimus aims to totally revolutionize the way people live, and Musk has said that working will be optional due to its presence. Tesla’s hopes for Optimus truly show a crystal clear image of the future and what could be possible with humanoid robots and AI.

Continue Reading

News

Tesla Robotaxi fleet reaches new milestone that should expel common complaint

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

Published

on

Credit: Tesla

Tesla Robotaxi is active in both the Bay Area of California and Austin, Texas, and the fleet has reached a new milestone that should expel a common complaint: lack of availability.

It has now been confirmed by Robotaxi Tracker that the fleet of Tesla’s ride-sharing vehicles has reached 200, with 158 of those being available in the Bay Area and 42 more in Austin. Despite the program first launching in Texas, the company has more vehicles available in California.

The California area of operation is much larger than it is in Texas, and the vehicle fleet is larger because Tesla operates it differently; Safety Monitors sit in the driver’s seat in California while FSD navigates. In Texas, Safety Monitors sit in the passenger’s seat, but will switch seats when routing takes them on the highway.

Tesla has also started testing rides without any Safety Monitors internally.

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

This new milestone confronts a common complaint of Robotaxi riders in Austin and the Bay, which is vehicle availability.

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

With that being said, there have been some who have said wait times have improved significantly, especially in the Bay, where the fleet is much larger.

Tesla’s approach to the Robotaxi fleet has been to prioritize safety while also gathering its footing as a ride-hailing platform.

Of course, there have been and still will be growing pains, but overall, things have gone smoothly, as there have been no major incidents that would derail the company’s ability to continue developing an effective mode of transportation for people in various cities in the U.S.

Tesla plans to expand Robotaxi to more cities this year, including Miami, Las Vegas, and Houston, among several others.

Continue Reading