Connect with us

News

A SpaceX surprise: Falcon Heavy booster landing to smash distance record

Falcon Heavy center core B1055 landed aboard drone ship OCISLY nearly 970 km (600 mi) off the coast of Florida. Center core B1057 could smash that record by almost 30% on June 24th. (SpaceX)

Published

on

In an unexpected last-second change, SpaceX has moved Falcon Heavy Flight 3’s center core landing on drone ship Of Course I Still Love You (OCISLY) from 40 km to more than 1240 km (770 mi) off the coast of Florida.

Drone ship OCISLY is already being towed to the landing site, necessary due to the sheer distance that needs to be covered at a leisurely towing pace. The current record for distance traveled during booster recovery was set at ~970 km by Falcon Heavy center core B1055 in April 2019. If successful, Falcon Heavy center core B1057 will smash that record by almost 30% after sending two dozen spacecraft on their way to orbit. Falcon Heavy Flight 3 is scheduled to lift off in support of the Department of Defense’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. A routine static fire test at Pad 39A will (hopefully) set the stage for launch on Wednesday, June 19th.

This comes as a significant surprise for several reasons. First and foremost, the difference between a center core landing 40 km or 1300 km from the launch site is immense. For Falcon Heavy, the center core shuts down and separates from the rest of the rocket as much as a minute after the rocket’s two side boosters, potentially doubling the booster’s relative velocity at separation.

USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)
A return to launch site (RTLS) booster recovery requires a ton of latent performance, particularly for a booster traveling as fast as a Falcon Heavy center core. (USAF – James Rainier)

That extra minute of acceleration means that the center core can easily be 50-100+ km downrange at the point of separation. In other words, landing 40 km offshore aboard drone ship OCISLY would be roughly akin to a full boostback burn, meaning that the center core would need to nullify all of its substantial downrange velocity, turn around, and fly ~50-100 km back towards the launch site. Being able to perform such an aggressive maneuver would indicate that Falcon Heavy’s boost stage has a huge amount of propellant (delta V) remaining after completing its role in the launch.

To have STP-2’s center core recovery moved from 40 km to 1240 km thus indicates an absolutely massive change in the rocket’s mission plan and launch trajectory. For reference, Falcon Heavy Flight 2’s Block 5 center core (B1055) set SpaceX’s current record for recovery distance (970 km/600 mi) after launching Arabsat 6A – a massive ~6500 kg (14,300 lb) satellite – to a spectacularly high transfer orbit of >90,000 km (56,000 mi).

Why so spicy?

There are three obvious possibilities that might help explain why the STP-2 mission has abruptly indicated that it will require SpaceX’s most energetic booster recovery yet.

1. STP-2 is carrying at least 1-2 metric tons worth of mystery payload(s)

This is highly unlikely. The USAF SMC has already released a SpaceX photo showing the late stages of the STP-2 payload stack’s encapsulation inside Falcon Heavy’s payload fairing. Short of an elaborate faked encapsulation followed by the installation of additional mysterious spacecraft or some extremely dense hardware hidden inside, it’s safe to say that the STP-2 payload stack weighs what the USAF says it weighs, which is to say not nearly heavy enough to warrant a record-smashing booster recovery given the known orbital destinations.

Advertisement

The USAF further confirmed that there is no ballast on the stack, removing the possibility of a lead weight or steel boilerplate meant to artificially push Falcon Heavy to its limits.

2. STP-2’s already-challenging Falcon upper stage mission profile is even more exotic than described

Per official mission overviews, it’s already clear that STP-2 could be the most challenging launch ever attempted for SpaceX’s orbital Falcon upper stage. According to SpaceX itself, “STP-2…will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”

An overview of the STP-2 Falcon Heavy upper stage’s exotic and extremely challenging mission profile. (USAF)

While undeniably challenging, it’s not clear why it would require such a high-energy center core recovery. With a payload mass of just ~3700 kg, Falcon 9 has launched much larger payloads to (relatively) higher orbits, but this fails to account for the added challenge of long coasts and multiple different orbits. Also of note, the above graph (courtesy of a years-old USAF document) appears to disagree with SpaceX’s description of “four… upper-stage burns”, instead showing five burns (red spikes).

More likely than not, OCISLY’s ~1200-kilometer move can be explained largely by the reintroduction of what the above graph describes as the Falcon upper stage’s “disposal burn”, likely referring to a deorbit burn. On top of the delta V already required for the first four burns, it isn’t out of the question that an additional coast and deorbit burn from 6000 km (3700 mi) would push the recovery equation in favor of attempting to incinerate center core B1057.

Falcon Heavy’s upper stage deploys its payload fairing, revealing the STP-2 payload stack. (SpaceX)

3. USAF/DoD conservatism strikes again?

The last plausible explanation for this radical shift is that the US Air Force/Department of Defense (DoD) has decided last-second that they want more margins on top of their already-overflowing safety margins, quite literally pushing B1057 to the edge of its performance envelope to mitigate low-probability failure modes. This has been done to an even more extreme extent with the US Air Force’s recent GPS III SV01 launch, in which SpaceX was forced to expend a new Falcon 9 Block 5 booster to provide the extreme safety margins the USAF desired.

According to the USAF, the STP-2 mission – including launch costs – represents as much as $750M, coincidentally similar to the estimated cost of the GPS III SV01 satellite and an expendable Falcon 9 rocket. As such, it’s not out of the question that a similar level of paranoia/conservatism is in play for STP-2.

Falcon 9 lifts off with the US Air Force’s first ~$500M GPS III spacecraft, December 2018. (SpaceX)

Numbers 2 and 3 are equally plausible explanations for this last-second booster recovery shift. Given the US military’s active involvement, it’s more likely than not that no explanations will be offered. Regardless, this surprise development is bound to result in a truly spectacular recovery attempt for SpaceX’s second Block 5 center core and will likely involve breaking several still-fresh records in the process.

Falcon Heavy Flight 3 is in the middle of rolling out to SpaceX’s Kennedy Space Center Pad 39A launch facilities for a routine pre-launch static fire test, scheduled to occur no earlier than 12:30 pm ET (16:30 UTC), June 19th. If all goes well, SpaceX should be on track for its first STP-2 launch attempt at 11:30 pm ET (03:30 UTC), June 24th.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading