News
A SpaceX surprise: Falcon Heavy booster landing to smash distance record
In an unexpected last-second change, SpaceX has moved Falcon Heavy Flight 3’s center core landing on drone ship Of Course I Still Love You (OCISLY) from 40 km to more than 1240 km (770 mi) off the coast of Florida.
Drone ship OCISLY is already being towed to the landing site, necessary due to the sheer distance that needs to be covered at a leisurely towing pace. The current record for distance traveled during booster recovery was set at ~970 km by Falcon Heavy center core B1055 in April 2019. If successful, Falcon Heavy center core B1057 will smash that record by almost 30% after sending two dozen spacecraft on their way to orbit. Falcon Heavy Flight 3 is scheduled to lift off in support of the Department of Defense’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. A routine static fire test at Pad 39A will (hopefully) set the stage for launch on Wednesday, June 19th.
This comes as a significant surprise for several reasons. First and foremost, the difference between a center core landing 40 km or 1300 km from the launch site is immense. For Falcon Heavy, the center core shuts down and separates from the rest of the rocket as much as a minute after the rocket’s two side boosters, potentially doubling the booster’s relative velocity at separation.

That extra minute of acceleration means that the center core can easily be 50-100+ km downrange at the point of separation. In other words, landing 40 km offshore aboard drone ship OCISLY would be roughly akin to a full boostback burn, meaning that the center core would need to nullify all of its substantial downrange velocity, turn around, and fly ~50-100 km back towards the launch site. Being able to perform such an aggressive maneuver would indicate that Falcon Heavy’s boost stage has a huge amount of propellant (delta V) remaining after completing its role in the launch.
To have STP-2’s center core recovery moved from 40 km to 1240 km thus indicates an absolutely massive change in the rocket’s mission plan and launch trajectory. For reference, Falcon Heavy Flight 2’s Block 5 center core (B1055) set SpaceX’s current record for recovery distance (970 km/600 mi) after launching Arabsat 6A – a massive ~6500 kg (14,300 lb) satellite – to a spectacularly high transfer orbit of >90,000 km (56,000 mi).
Why so spicy?
There are three obvious possibilities that might help explain why the STP-2 mission has abruptly indicated that it will require SpaceX’s most energetic booster recovery yet.
1. STP-2 is carrying at least 1-2 metric tons worth of mystery payload(s)
This is highly unlikely. The USAF SMC has already released a SpaceX photo showing the late stages of the STP-2 payload stack’s encapsulation inside Falcon Heavy’s payload fairing. Short of an elaborate faked encapsulation followed by the installation of additional mysterious spacecraft or some extremely dense hardware hidden inside, it’s safe to say that the STP-2 payload stack weighs what the USAF says it weighs, which is to say not nearly heavy enough to warrant a record-smashing booster recovery given the known orbital destinations.
The USAF further confirmed that there is no ballast on the stack, removing the possibility of a lead weight or steel boilerplate meant to artificially push Falcon Heavy to its limits.
2. STP-2’s already-challenging Falcon upper stage mission profile is even more exotic than described
Per official mission overviews, it’s already clear that STP-2 could be the most challenging launch ever attempted for SpaceX’s orbital Falcon upper stage. According to SpaceX itself, “STP-2…will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”

While undeniably challenging, it’s not clear why it would require such a high-energy center core recovery. With a payload mass of just ~3700 kg, Falcon 9 has launched much larger payloads to (relatively) higher orbits, but this fails to account for the added challenge of long coasts and multiple different orbits. Also of note, the above graph (courtesy of a years-old USAF document) appears to disagree with SpaceX’s description of “four… upper-stage burns”, instead showing five burns (red spikes).
More likely than not, OCISLY’s ~1200-kilometer move can be explained largely by the reintroduction of what the above graph describes as the Falcon upper stage’s “disposal burn”, likely referring to a deorbit burn. On top of the delta V already required for the first four burns, it isn’t out of the question that an additional coast and deorbit burn from 6000 km (3700 mi) would push the recovery equation in favor of attempting to incinerate center core B1057.

3. USAF/DoD conservatism strikes again?
The last plausible explanation for this radical shift is that the US Air Force/Department of Defense (DoD) has decided last-second that they want more margins on top of their already-overflowing safety margins, quite literally pushing B1057 to the edge of its performance envelope to mitigate low-probability failure modes. This has been done to an even more extreme extent with the US Air Force’s recent GPS III SV01 launch, in which SpaceX was forced to expend a new Falcon 9 Block 5 booster to provide the extreme safety margins the USAF desired.
According to the USAF, the STP-2 mission – including launch costs – represents as much as $750M, coincidentally similar to the estimated cost of the GPS III SV01 satellite and an expendable Falcon 9 rocket. As such, it’s not out of the question that a similar level of paranoia/conservatism is in play for STP-2.

Numbers 2 and 3 are equally plausible explanations for this last-second booster recovery shift. Given the US military’s active involvement, it’s more likely than not that no explanations will be offered. Regardless, this surprise development is bound to result in a truly spectacular recovery attempt for SpaceX’s second Block 5 center core and will likely involve breaking several still-fresh records in the process.
Falcon Heavy Flight 3 is in the middle of rolling out to SpaceX’s Kennedy Space Center Pad 39A launch facilities for a routine pre-launch static fire test, scheduled to occur no earlier than 12:30 pm ET (16:30 UTC), June 19th. If all goes well, SpaceX should be on track for its first STP-2 launch attempt at 11:30 pm ET (03:30 UTC), June 24th.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla stands to win big from potential adjustment to autonomous vehicle limitations
Enabling scale, innovation, and profitability in a sector that is growing quickly would benefit Tesla significantly, especially as it has established itself as a leader.
Tesla stands to be a big winner from a potential easing of limitations on autonomous vehicle development, as the United States government could back off from the restrictions placed on companies developing self-driving car programs.
The U.S. House Energy and Commerce subcommittee will hold a hearing later this month that will aim to accelerate the deployment of autonomous vehicles. There are several key proposals that could impact the development of self-driving cars and potentially accelerate the deployment of this technology across the country.
These key proposals include raising the NHTSA’s exemption cap from 2,500 to 90,000 vehicles per year per automaker, preempting state-level regulations on autonomous vehicle systems, and mandating NHTSA guidelines for calibrating advanced driver assistance systems (ADAS).
Congress, to this point, has been divided on AV rules, with past bills like the 2017 House-passed measure stalling in the Senate. Recent pushes come from automakers urging the Trump administration to act faster amid competition from Chinese companies.
Companies like Tesla, who launched a Robotaxi service in Austin and the Bay Area last year, and Alphabet’s Waymo are highlighted as potential beneficiaries from lighter sanctions on AV development.
The NHTSA recently pledged to adopt a quicker exemption review for autonomous vehicle companies, and supporters of self-driving tech argue this will boost U.S. innovation, while critics are concerned about safety and job risks.
How Tesla Could Benefit from the Proposed Legislation
Tesla, under CEO Elon Musk’s leadership, has positioned itself as a pioneer in autonomous driving technology with its Full Self-Driving software and ambitious Robotaxi plans, including the Cybercab, which was unveiled in late 2024.
The draft legislation under consideration by the U.S. House subcommittee could provide Tesla with significant advantages, potentially transforming its operational and financial landscape.
NHTSA Exemption Cap Increase
First, the proposed increase in the NHTSA exemption cap from 2,500 to 90,000 vehicles annually would allow Tesla to scale up development dramatically.
Currently, regulatory hurdles limit how many fully autonomous vehicles can hit the roads without exhaustive approvals. For Tesla, this means accelerating the rollout of its robotaxi fleet, which Musk envisions as a network of millions of vehicles generating recurring revenue through ride-hailing. With Tesla’s vast existing fleet of over 6 million vehicles equipped with FSD hardware, a higher cap could enable rapid conversion and deployment, turning parked cars into profit centers overnight.
Preempting State Regulations
A united Federal framework would be created if it could preempt State regulations, eliminating the patchwork of rules that currently complicate interstate operations. Tesla has faced scrutiny and restrictions in states like California, especially as it has faced harsh criticism through imposed testing limits.
A federal override of State-level rules would reduce legal battles, compliance costs, and delays, allowing Tesla to expand services nationwide more seamlessly.
This is crucial for Tesla’s growth strategy, as it operates in multiple markets and aims for a coast-to-coast Robotaxi network, competing directly with Waymo’s city-specific expansions.
Bringing Safety Standards to the Present Day
Innovation in the passenger transportation sector has continued to outpace both State and Federal-level legislation, which has caused a lag in the development of many things, most notably, self-driving technology.
Updating these outdated safety standards, especially waiving requirements for steering wheels or mirrors, directly benefits Tesla’s innovative designs. Tesla wanted to ship Cybertruck without side mirrors, but Federal regulations required the company to equip the pickup with them.
Cybercab is also planned to be released without a steering wheel or pedals, and is tailored for full autonomy, but current rules would mandate human-ready features.
Streamlined NHTSA reviews would further expedite approvals, addressing Tesla’s complaints about bureaucratic slowdowns. In a letter written in June to the Trump Administration, automakers, including Tesla, urged faster action, and this legislation could deliver it.
In Summary
This legislation represents a potential regulatory tailwind for Tesla, but it still relies on the government to put forth action to make things easier from a regulatory perspective. Enabling scale, innovation, and profitability in a sector that is growing quickly would benefit Tesla significantly, especially as it has established itself as a leader.
News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.