News
A SpaceX surprise: Falcon Heavy booster landing to smash distance record
In an unexpected last-second change, SpaceX has moved Falcon Heavy Flight 3’s center core landing on drone ship Of Course I Still Love You (OCISLY) from 40 km to more than 1240 km (770 mi) off the coast of Florida.
Drone ship OCISLY is already being towed to the landing site, necessary due to the sheer distance that needs to be covered at a leisurely towing pace. The current record for distance traveled during booster recovery was set at ~970 km by Falcon Heavy center core B1055 in April 2019. If successful, Falcon Heavy center core B1057 will smash that record by almost 30% after sending two dozen spacecraft on their way to orbit. Falcon Heavy Flight 3 is scheduled to lift off in support of the Department of Defense’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. A routine static fire test at Pad 39A will (hopefully) set the stage for launch on Wednesday, June 19th.
This comes as a significant surprise for several reasons. First and foremost, the difference between a center core landing 40 km or 1300 km from the launch site is immense. For Falcon Heavy, the center core shuts down and separates from the rest of the rocket as much as a minute after the rocket’s two side boosters, potentially doubling the booster’s relative velocity at separation.

That extra minute of acceleration means that the center core can easily be 50-100+ km downrange at the point of separation. In other words, landing 40 km offshore aboard drone ship OCISLY would be roughly akin to a full boostback burn, meaning that the center core would need to nullify all of its substantial downrange velocity, turn around, and fly ~50-100 km back towards the launch site. Being able to perform such an aggressive maneuver would indicate that Falcon Heavy’s boost stage has a huge amount of propellant (delta V) remaining after completing its role in the launch.
To have STP-2’s center core recovery moved from 40 km to 1240 km thus indicates an absolutely massive change in the rocket’s mission plan and launch trajectory. For reference, Falcon Heavy Flight 2’s Block 5 center core (B1055) set SpaceX’s current record for recovery distance (970 km/600 mi) after launching Arabsat 6A – a massive ~6500 kg (14,300 lb) satellite – to a spectacularly high transfer orbit of >90,000 km (56,000 mi).
Why so spicy?
There are three obvious possibilities that might help explain why the STP-2 mission has abruptly indicated that it will require SpaceX’s most energetic booster recovery yet.
1. STP-2 is carrying at least 1-2 metric tons worth of mystery payload(s)
This is highly unlikely. The USAF SMC has already released a SpaceX photo showing the late stages of the STP-2 payload stack’s encapsulation inside Falcon Heavy’s payload fairing. Short of an elaborate faked encapsulation followed by the installation of additional mysterious spacecraft or some extremely dense hardware hidden inside, it’s safe to say that the STP-2 payload stack weighs what the USAF says it weighs, which is to say not nearly heavy enough to warrant a record-smashing booster recovery given the known orbital destinations.
The USAF further confirmed that there is no ballast on the stack, removing the possibility of a lead weight or steel boilerplate meant to artificially push Falcon Heavy to its limits.
2. STP-2’s already-challenging Falcon upper stage mission profile is even more exotic than described
Per official mission overviews, it’s already clear that STP-2 could be the most challenging launch ever attempted for SpaceX’s orbital Falcon upper stage. According to SpaceX itself, “STP-2…will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”

While undeniably challenging, it’s not clear why it would require such a high-energy center core recovery. With a payload mass of just ~3700 kg, Falcon 9 has launched much larger payloads to (relatively) higher orbits, but this fails to account for the added challenge of long coasts and multiple different orbits. Also of note, the above graph (courtesy of a years-old USAF document) appears to disagree with SpaceX’s description of “four… upper-stage burns”, instead showing five burns (red spikes).
More likely than not, OCISLY’s ~1200-kilometer move can be explained largely by the reintroduction of what the above graph describes as the Falcon upper stage’s “disposal burn”, likely referring to a deorbit burn. On top of the delta V already required for the first four burns, it isn’t out of the question that an additional coast and deorbit burn from 6000 km (3700 mi) would push the recovery equation in favor of attempting to incinerate center core B1057.

3. USAF/DoD conservatism strikes again?
The last plausible explanation for this radical shift is that the US Air Force/Department of Defense (DoD) has decided last-second that they want more margins on top of their already-overflowing safety margins, quite literally pushing B1057 to the edge of its performance envelope to mitigate low-probability failure modes. This has been done to an even more extreme extent with the US Air Force’s recent GPS III SV01 launch, in which SpaceX was forced to expend a new Falcon 9 Block 5 booster to provide the extreme safety margins the USAF desired.
According to the USAF, the STP-2 mission – including launch costs – represents as much as $750M, coincidentally similar to the estimated cost of the GPS III SV01 satellite and an expendable Falcon 9 rocket. As such, it’s not out of the question that a similar level of paranoia/conservatism is in play for STP-2.

Numbers 2 and 3 are equally plausible explanations for this last-second booster recovery shift. Given the US military’s active involvement, it’s more likely than not that no explanations will be offered. Regardless, this surprise development is bound to result in a truly spectacular recovery attempt for SpaceX’s second Block 5 center core and will likely involve breaking several still-fresh records in the process.
Falcon Heavy Flight 3 is in the middle of rolling out to SpaceX’s Kennedy Space Center Pad 39A launch facilities for a routine pre-launch static fire test, scheduled to occur no earlier than 12:30 pm ET (16:30 UTC), June 19th. If all goes well, SpaceX should be on track for its first STP-2 launch attempt at 11:30 pm ET (03:30 UTC), June 24th.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Investor's Corner
Tesla stock closes at all-time high on heels of Robotaxi progress
Tesla stock (NASDAQ: TSLA) closed at an all-time high on Tuesday, jumping over 3 percent during the day and finishing at $489.88.
The price beats the previous record close, which was $479.86.
Shares have had a crazy year, dipping more than 40 percent from the start of the year. The stock then started to recover once again around late April, when its price started to climb back up from the low $200 level.
This week, Tesla started to climb toward its highest levels ever, as it was revealed on Sunday that the company was testing driverless Robotaxis in Austin. The spike in value pushed the company’s valuation to $1.63 trillion.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
It is the seventh-most valuable company on the market currently, trailing Nvidia, Apple, Alphabet (Google), Microsoft, Amazon, and Meta.
Shares closed up $14.57 today, up over 3 percent.
The stock has gone through a lot this year, as previously mentioned. Shares tumbled in Q1 due to CEO Elon Musk’s involvement with the Department of Government Efficiency (DOGE), which pulled his attention away from his companies and left a major overhang on their valuations.
However, things started to rebound halfway through the year, and as the government started to phase out the $7,500 tax credit, demand spiked as consumers tried to take advantage of it.
Q3 deliveries were the highest in company history, and Tesla responded to the loss of the tax credit with the launch of the Model 3 and Model Y Standard.
Additionally, analysts have announced high expectations this week for the company on Wall Street as Robotaxi continues to be the focus. With autonomy within Tesla’s sights, things are moving in the direction of Robotaxi being a major catalyst for growth on the Street in the coming year.
Elon Musk
Tesla needs to come through on this one Robotaxi metric, analyst says
“We think the key focus from here will be how fast Tesla can scale driverless operations (including if Tesla’s approach to software/hardware allows it to scale significantly faster than competitors, as the company has argued), and on profitability.”
Tesla needs to come through on this one Robotaxi metric, Mark Delaney of Goldman Sachs says.
Tesla is in the process of rolling out its Robotaxi platform to areas outside of Austin and the California Bay Area. It has plans to launch in five additional cities, including Houston, Dallas, Miami, Las Vegas, and Phoenix.
However, the company’s expansion is not what the focus needs to be, according to Delaney. It’s the speed of deployment.
The analyst said:
“We think the key focus from here will be how fast Tesla can scale driverless operations (including if Tesla’s approach to software/hardware allows it to scale significantly faster than competitors, as the company has argued), and on profitability.”
Profitability will come as the Robotaxi fleet expands. Making that money will be dependent on when Tesla can initiate rides in more areas, giving more customers access to the program.
There are some additional things that the company needs to make happen ahead of the major Robotaxi expansion, one of those things is launching driverless rides in Austin, the first city in which it launched the program.
This week, Tesla started testing driverless Robotaxi rides in Austin, as two different Model Y units were spotted with no occupants, a huge step in the company’s plans for the ride-sharing platform.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
CEO Elon Musk has been hoping to remove Safety Monitors from Robotaxis in Austin for several months, first mentioning the plan to have them out by the end of 2025 in September. He confirmed on Sunday that Tesla had officially removed vehicle occupants and started testing truly unsupervised rides.
Although Safety Monitors in Austin have been sitting in the passenger’s seat, they have still had the ability to override things in case of an emergency. After all, the ultimate goal was safety and avoiding any accidents or injuries.
Goldman Sachs reiterated its ‘Neutral’ rating and its $400 price target. Delaney said, “Tesla is making progress with its autonomous technology,” and recent developments make it evident that this is true.
Investor's Corner
Tesla gets bold Robotaxi prediction from Wall Street firm
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Tesla (NASDAQ: TSLA) received a bold Robotaxi prediction from Morgan Stanley, which anticipates a dramatic increase in the size of the company’s autonomous ride-hailing suite in the coming years.
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Percoco dug into the Robotaxi fleet and its expansion in the coming years in his latest note, released on Tuesday. The firm expects Tesla to increase the Robotaxi fleet size to 1,000 vehicles in 2026. However, that’s small-scale compared to what they expect from Tesla in a decade.
Tesla expands Robotaxi app access once again, this time on a global scale
By 2035, Morgan Stanley believes there will be one million Robotaxis on the road across multiple cities, a major jump and a considerable fleet size. We assume this means the fleet of vehicles Tesla will operate internally, and not including passenger-owned vehicles that could be added through software updates.
He also listed three specific catalysts that investors should pay attention to, as these will represent the company being on track to achieve its Robotaxi dreams:
- Opening Robotaxi to the public without a Safety Monitor. Timing is unclear, but it appears that Tesla is getting closer by the day.
- Improvement in safety metrics without the Safety Monitor. Tesla’s ability to improve its safety metrics as it scales miles driven without the Safety Monitor is imperative as it looks to scale in new states and cities in 2026.
- Cybercab start of production, targeted for April 2026. Tesla’s Cybercab is a purpose-built vehicle (no steering wheel or pedals, only two seats) that is expected to be produced through its state-of-the-art unboxed manufacturing process, offering further cost reductions and thus accelerating adoption over time.
Robotaxi stands to be one of Tesla’s most significant revenue contributors, especially as the company plans to continue expanding its ride-hailing service across the world in the coming years.
Its current deployment strategy is controlled and conservative to avoid any drastic and potentially program-ruining incidents.
So far, the program, which is active in Austin and the California Bay Area, has been widely successful.