SpaceX is in the final stages of preparing a trio of Falcon 9 rockets for a set of launches scheduled less than two days apart.
The potential hat trick will likely be the last opportunity for a salvo of Falcon launches before the end of 2022. As a disclaimer, while unofficial launch dates (derived from regulatory documents or well-sourced public manifests) were consistently close to actual launch dates for most of 2022, that ceased to be the case when SpaceX began experiencing an abrupt uptick in launch delays over the last two months. As a result, Falcon launch dates – even once confirmed by SpaceX – should be assumed to be a bit more uncertain than usual until it’s clear that that trend has died down.
Nonetheless, all available signs indicate that SpaceX and its customers are moving forward with plans for three back-to-back launches before the end of the week.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Set to kick off the diverse trio is the Surface Water and Ocean Topography (SWOT) spacecraft, a roughly $1.2 billion joint mission between NASA and French space agency CNES. Thanks in part to the COVID pandemic, which has and continues to impact large swaths of NASA and the aerospace industry, NASA’s Jet Propulsion Laboratory completed its portion of SWOT around 9% over budget and eight months behind schedule [PDF] since mission formulation began in 2012. Over a similar time scale, several other NASA missions have experienced cost increases of 10-100%, generally reflecting well on SWOT’s management.
SWOT, a roughly two-ton (~4400 lb) satellite, is designed to conduct the first global survey of all surface water on Earth using two large synthetic aperture radar (SAR) antennas and a conventional radar altimeter. At a cost of roughly $112 million, a SpaceX Falcon 9 rocket is scheduled to launch SWOT to low Earth orbit (LEO) no earlier than (NET) 3:46 am PST (11:46 UTC) on Thursday, December 15th. SpaceX successfully tested SWOT’s Falcon 9 well in advance on December 10th. The rocket was then returned to the company’s hangar at Vandenberg Space Force Base (VSFB) Space Launch Complex 4E for payload installation before rolling back to the pad on December 13th.
The light satellite and low target orbit will allow Falcon 9’s booster to return to the launch site and land at SpaceX’s LZ-4 landing zone, precluding the need for a drone ship recovery.


Up next, another Falcon 9 rocket is scheduled to launch the first two of eleven Boeing-built O3b mPOWER communication satellites for operator SES as early as 4:21 pm EST (21:21 UTC), Friday, December 16th. After lifting off from SpaceX’s Cape Canaveral Space Force Station (CCSFS) LC-40 pad, Falcon 9 is set to launch the roughly 3.4-ton (~7500 lb) pair of satellites to a medium Earth orbit (MEO) with an altitude of 7825 kilometers (4862 mi).
It’s unclear what orbit Falcon 9 will launch the satellites to, but the rocket’s booster will land on drone ship A Shortfall of Gravitas (ASOG) some 700 kilometers (~435 mi) downrange, indicating that it will need as much performance as the rocket can give. ASOG departed Port Canaveral on December 11th, confirming that launch preparations are well underway.

Finally, a third Falcon 9 rocket could launch SpaceX’s first Starlink mission since October 28th as early as 4:54 or 5:13 pm EST (21:54 or 22:13) on December 16th, potentially just 33 or 52 minutes after O3b mPOWER 1&2. If the two missions do launch on December 16th, which a reliable source of unofficial information has indicated is not guaranteed, it will smash the US record for back-to-back launches of the same rocket family. Russia’s R-7 rocket family will retain the international crown, however, having launched twice in 25 minutes in 1969.
Starlink 4-37 will lift off from SpaceX’s NASA Kennedy Space Center LC-39A pad, and its Falcon 9 booster will attempt to launch on drone ship Just Read The Instructions (JRTI). JRTI departed Port Canaveral on December 12th.
Following Starlink 4-37, SpaceX has at least two more launches tentatively scheduled before the end of 2022. NextSpaceflight.com reports that SpaceX could launch its sixth Transporter rideshare mission from Florida on December 27th, and two Israeli EROS-C3 Earth observation satellites out of California on December 29th. However, it’s worth noting that in the almost 17-year history of SpaceX Falcon operations, the company has never launched a rocket after December 23rd or before January 6th. Transporter-6 and EROS-C3 – SpaceX’s 60th and 61st launches of the year – would have to break through that apparent firewall to launch when they are currently scheduled.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.