Connect with us

News

SpaceX wants to offer Starlink internet to consumers after just six launches

A general overview of Starlink's bus, launch stacking, and solar array. (SpaceX)

Published

on

SpaceX has created a brand new website dedicated to its Starlink satellite constellation, a prelude to offering Internet service to consumers after as few as six launches.

Additionally, Starlink.com reiterated CEO Elon Musk’s estimate that SpaceX will conduct 2-6 dedicated Starlink launches – carrying at least 60 satellites each – in 2019 alone. In other words, a best-case satellite deployment scenario could mean that SpaceX will be able to start offering Starlink service to consumers “in the Northern U.S. and Canadian latitudes” as early as this year, while commercial offerings would thus be all but guaranteed in 2020. A step further, SpaceX believes it will be able to offer coverage of the entirety of the populated world after as few as 24 launches (~1500 Starlink satellites).

Starlink is targeted to offer service in the Northern U.S. and Canadian latitudes after six launches, rapidly expanding to global coverage of the populated world after an expected 24 launches. SpaceX is targeting two to six Starlink launches by the end of this year.” — SpaceX, Starlink.com

This quiet announcement of SpaceX’s expected initial operational capability (IOC) confirms that the company’s plans to offer communications services to consumers are just as ambitious as its 60-satellite, 18.5 ton (~40,000 lb) Starlink launch debut. Assuming an average of 60 Starlink satellites per launch, SpaceX wants to begin serving customers in the US and Canada as soon as ~360 spacecraft are in orbit, a milestone that could occur as early as late 2019. Sometime in the first half of 2020 is arguably far more likely, but the fact alone that service could be offered in 2019 illustrates just how far SpaceX is ahead of its competitors, of which only OneWeb seems to pose an actual threat.

On February 27th, OneWeb launched its first six satellites – down from a planned ten, already ~20 satellites short of a ‘full’ launch – as a mix between its first orbital test and the first launch of operational spacecraft. OneWeb’s initial constellation will feature 648 satellites, potentially rising to 900 and eventually ~2000 in the years to come, pending commercial success and investor interest. The company currently has plans to begin a monthly launch campaign of ~20 Soyuz rockets no earlier than than August or September 2019, likely completing the first phase of its constellation sometime in 2021.

“OneWeb and its satellite manufacturing partner Airbus Defence and Space have crammed 10 gigabits per second of capacity into spacecraft the size of dishwashers. Tom Enders, Airbus Group’s outgoing CEO, said Feb. 14 that OneWeb satellites cost $1 million each to produce, and that the companies will be able to complete 350 to 400 satellites annually from their joint venture OneWeb Satellite’s $85 million Florida factory opening in April. The first batches of Florida-built satellites should be delivered to OneWeb toward the end of the third quarter, Airbus spokesman Guilhem Boltz said.”

SpaceNews, March 2019

Assuming SpaceX aims to launch one dedicated 60-satellite Starlink mission every 6-8 weeks, the company could easily have a constellation of more than 600 satellites in orbit by the end of 2020. Compared to OneWeb, each Starlink satellite weighs about 40% more (~150 kg vs. ~230 kg) but also offers almost double the usable throughput (~17-20 Gbps vs. OneWeb’s ~10 Gbps). In short, SpaceX should be able to offer the same capacity of coverage and service as soon – if not far sooner – than OneWeb, while constellation hopefuls like Telesat, LeoSat, and Amazon’s Project Kuiper are likely 2-5 years away from launching their first satellites, let alone offering service.

Advertisement
Starlink satellites deploy their solar arrays in this official visualization. (SpaceX)

SpaceX’s foray into satellite design

Aside from revealing SpaceX’s tentative schedule for its Starlink service offerings, Starlink.com included excellent, surprisingly detailed renders of satellite hardware, ranging from Dragon-heritage star trackers to the world’s first flightworthy ion thrusters powered by krypton. These renders simply confirm what was already clear: SpaceX has gone against the grain of traditional satellite design at almost every turn, producing a bus (the general structure and form factor) that is unlike almost anything that came before it.

A general overview of Starlink’s bus, launch stacking, and solar array. (SpaceX)
Starlink’s star trackers (left; used for precise pointing and positioning) and what are likely four gyros, also used for pointing and orientation. (SpaceX)
One of Starlink’s krypton ion thrusters is tested at SpaceX’s satellite production facilities. (SpaceX)

As a complete layperson to spacecraft design, it’s hard to describe SpaceX’s first internally designed satellite bus as anything less than elegant. Thanks to their uniquely flat form factor, the satellites can be packed into a Falcon 9 fairing with extreme efficiency, making SpaceX’s first dedicated Starlink launch the company’s heaviest payload ever at more than 18.5 tons (~40,000 lb). For comparison, OneWeb plans to launch approximately 30×150 kg satellites per Soyuz 2.1 launch with a traditional cylindrical adapter, itself weighing ~1000 kg.

For Starlink, the method the 60 satellites use to securely attach to each other remains a minor mystery, only hinted at by photos and renders that show three metal rings/connectors per satellite. However it works, it appears that SpaceX has found a way to launch and deploy dozens of fairly large spacecraft while wasting little to no mass on a dedicated dispenser. Altogether, it appears that SpaceX has already begun to surpass the technological capabilities of its competitors, while also taking large risks with highly innovative, largely unprecedented design choices. All of those characteristics will help as SpaceX pushes to deploy Starlink and begin serving customers as quickly as possible.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Comments

News

Tesla teases new market entrance with confusing and cryptic message

Published

on

(Credit: Tesla)

Tesla teased its entrance into a new market with a confusing and what appeared to be cryptic message on the social media platform X.

The company has been teasing its entrance into several markets, including Africa, which would be a first, and South America, where it only operates in Chile.

In September, Tesla started creating active job postings for the Colombian market, hinting it would expand its presence in South America and launch in a new country for the first time in two years.

Tesla job postings seem to show next surprise market entry

The jobs were related to various roles, including Associate Sales Manager, Advisors in Sales and Delivery, and Service Technicians. These are all roles that would indicate Tesla is planning to launch a wide-scale effort to sell, manage, and repair vehicles in the market.

Last night, Tesla posted its latest hint, a cryptic video that seems to show the outline of Colombia, teasing its closer than ever to market entry:

This would be the next expansion into a continent where it does not have much of a presence for Tesla. Currently, there are only two Supercharger locations on the entire continent, and they’re both in Chile.

Tesla will obviously need to expand upon this crucial part of the ownership experience to enable a more confident consumer base in South America as a whole. However, it is not impossible, as many other EV charging infrastructures are available, and home charging is always a suitable option for those who have access to it.

Surprisingly, Tesla seems to be more concerned about these middle-market countries as opposed to the larger markets in South America, but that could be by design.

If Tesla were to launch in Brazil initially, it may not be able to handle the uptick in demand, and infrastructure expansion could be more difficult. Brazil may be on its list in the upcoming years, but not as of right now.

Continue Reading

News

Tesla expands crucial Supercharging feature for easier access

It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.

Published

on

tesla supercharger
Credit: Tesla

Tesla has expanded a crucial Supercharging feature that helps owners identify stall availability at nearby locations.

Tesla said on Tuesday night that its “Live Availability” feature, which shows EV owners how many stalls are available at a Supercharger station, to Google Maps, a third-party app:

Already offering it in its own vehicles, the Live Availability feature that Teslas have is a helpful feature that helps you choose an appropriate station with plugs that are immediately available.

A number on an icon where the Supercharger is located lets EV drivers know how many stalls are available.

It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.

Essentially, when those drivers needed to charge at a Supercharger that enables non-Tesla EVs to plug in, there was a bit more of a gamble. There was no guarantee that a plug would be available, and with no way to see how many are open, it was a risk.

Tesla adding this feature allows people to have a more convenient and easier-to-use experience if they are in a non-Tesla EV. With the already expansive Supercharger Network being available to so many EV owners, there is more congestion than ever.

This new feature makes the entire experience better for all owners, especially as there is more transparency regarding the availability of plugs at Supercharger stalls.

It will be interesting to see if Tesla is able to expand on this new move, as Apple Maps compatibility is an obvious goal of the company’s in the future, we could imagine. In fact, this is one of the first times an Android Auto feature is available to those owners before it became an option for iOS users.

Apple owners tend to get priority with new features within the Tesla App itself.

Continue Reading

Elon Musk

Elon Musk’s Boring Co goes extra hard in Nashville with first rock-crushing TBM

The Boring Company’s machine for the project is now in final testing.

Published

on

Credit: The Boring Company/X

The Boring Company is gearing up to tackle one of its toughest projects yet, a new tunnel system beneath Nashville’s notoriously tough limestone terrain. Unlike the soft-soil conditions of Las Vegas and Austin, the Music City Loop will require a “hard-rock” boring machine capable of drilling through dense, erosion-resistant bedrock. 

The Boring Company’s machine for the project is now in final testing.

A boring hard-rock tunneling machine

The Boring Company revealed on X that its new hard-rock TBM can generate up to 4 million pounds of grip force and 1.5 million pounds of maximum thrust load. It also features a 15-filter dust removal system designed to keep operations clean and efficient during excavation even in places where hard rock is present.

Previous Boring Co. projects, including its Loop tunnels in Las Vegas, Austin, and Bastrop, were dug primarily through soft soils. Nashville’s geology, however, poses a different challenge. Boring Company CEO and President Steve Davis mentioned this challenge during the project’s announcement in late July.

“It’s a tough place to tunnel, Nashville. If we were optimizing for the easiest places to tunnel, it would not be here. You have extremely hard rock, like way harder than it should be. It’s an engineering problem that’s fairly easy and straightforward to solve,” Davis said.

Advertisement

Nashville’s limestone terrain

Experts have stated that the city’s subsurface conditions make it one of the more complex tunneling environments in the U.S. The Outer Nashville Basin is composed of cherty Mississippian-age limestone, a strong yet soluble rock that can dissolve over time, creating underground voids and caves, as noted in a report from The Tennessean.

Jakob Walter, the founder and principal engineer of Haushepherd, shared his thoughts on these challenges. “Limestone is generally a stable sedimentary bedrock material with strength parameters that are favorable for tunneling. Limestone is however fairly soluble when compared to other rack materials, and can dissolve over long periods of time when exposed to water. 

“Unexpected encounters with these features while tunneling can result in significant construction delays and potential instability of the excavation. In urban locations, structures at the ground surface should also be constantly monitored with robotic total stations or similar surveying equipment to identify any early signs of movement or distress,” he said.

Continue Reading

Trending