News
SpaceX just finished its third Starship rocket in two months and a fourth is on the way
SpaceX just rolled a completed Starship prototype to the launch pad for the third time in two months and began stacking the next rocket just hours after its assembly facilities were vacated.
SpaceX began building the latest Starship prototype – known as serial number 4 (SN4) – around March 23rd. Exactly 31 days later, SpaceX lifted the vast steel rocket onto a Roll Lift transporter and carried it roughly a mile down the road to the company’s Boca Chica, Texas test and launch facilities. In just a few hours, technicians lifted the rocket off its transporter and onto a fixed launch mount made out of thick steel beams, expediency made possible partly by the addition of new mounting points and hold-down clamps.
Sitting atop the late Starship SN3 prototype’s salvaged skirt, landing leg, and service section, the fate of Starship SN4 remains to be seen and the path it has taken to the pad is paved with the remains of several former prototypes. For the most part, that should be a positive aspect. Given how apparent it is that SpaceX is very quickly learning from past mistakes, SN4 has the best chance yet of successfully passing its proof tests and graduating into Raptor static fire and (perhaps) flight testing. However, if things don’t go as planned, SpaceX is perhaps just a week or two away from completing the next prototype – Starship SN5.

A few hours after SpaceX lifted Starship SN4 onto its steel launch mount, CEO Elon Musk revealed an aerial photo of the rocket and its pad facilities taken with a drone. Recently painted gray and refurbished to undo damage done by Starship SN3’s April 3rd, that mount is currently configured with a strong metal frame and three powerful hydraulic rams. A nearly identical jig was damaged during SN3’s last test when a minor tsunamic of liquid nitrogen – used to safely simulate ultra-cold and explosive liquid oxygen and methane propellant – washed over the mount after the rocket burst.
Much like an ice cube can violently crack and pop when it rapidly changes temperature, untreated steel (almost always cheaper than the alternative) can also be catastrophically damaged by rapid temperature changes (thermal shock). This appears to be exactly what happened to the first hydraulic ram mount, which had visible cracks in photos taken after Starship SN3’s April 3rd demise.

SpaceX appears to have had no issue at all acquiring a replacement in a matter of weeks and it arrived and was installed several days ago. The purpose of the hardware is relatively simple: simulate the stresses one or three Raptor engines will create when ignited and ensure Starship’s ‘thrust puck’ and engine section can survive those stresses while filled with cryogenic liquid methane.
Each ram attaches to the thrust puck with the same hardware an actual Raptor uses, including the rods each engine needs for thrust vector control (TVC; i.e. active steering). In the event that Starship SN4 passes its cryogenic proof test(s) and engine stress simulation(s) with flying colors, SpaceX has already built, acceptance-tested, and shipped three Raptor engines to Boca Chica, where they are waiting inside an assembly tent for their call to action.

Once a Starship prototype passes acceptance testing and three Raptor engines can be installed, it will be a first for SpaceX’s next-generation rocket engine. For example, if SN4 makes it through testing and is ready to proceed into static fire operations, it will be the first time Raptor has operated in a multi-engine setup – always a significant milestone for any launch vehicle, including SpaceX’s own Falcon 9 and Merlin engines.
In case SN4 does make it to the other side, SpaceX is already prepared with both road closures and NOTAMs (Notices To Airmen) for static fire and hop tests spread out over the next week or so.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”