For the fourth time in nine months, SpaceX has docked a Dragon spacecraft to the International Space Station with a second Dragon already present at the crewed orbital laboratory.
Launched Saturday on a Falcon 9 rocket after a one-day weather delay, SpaceX’s first upgraded Cargo Dragon 2 spacecraft gradually boosted and tweaked its orbit over the course of ~30 hours, looping around the Earth 20+ times before docking with the ISS more than half an hour ahead of schedule. Dragon’s Monday, August 30th arrival marked cargo capsule C208’s second space station docking in nine months, smashing SpaceX and the world’s turnaround record for a reusable orbital space capsule – of which Dragons are the only still flying.
SpaceX’s first twice-flown Crew Dragon was there to greet the first twice-flown Cargo Dragon 2 spacecraft when it docked, having spent the last four months in orbit in support of NASA’s second operational commercial crew mission (Crew-2). A similar instance of a pair Dragons meeting in space is likely to occur at least two more times before the end of 2021.


The first two-Dragons-one-ISS instance occurred just nine months ago when the very same Cargo Dragon 2 spacecraft (capsule C208) rendezvoused and docked with the ISS with SpaceX’s Crew-1 Crew Dragon already attached. At the time, in a number of press conferences and public statements centered around the launch of Crew-1 and CRS-21, SpaceX repeatedly hinted at just how prolific a year 2021 would be for Dragon and it’s hard to argue that the company was exaggerating.
Indeed, exactly as SpaceX foretold, Dragon spacecraft have maintained a continuous presence in orbit and repeatedly operated side by side at the ISS since Crew-1’s November 2021 launch. For the majority of NASA’s Commercial Crew Program development, that degree of continuous, single-provider operations was never meant to happen. SpaceX’s upgraded Cargo Dragon, for example, is one of two independent Commercial Resupply Services (CRS) spacecraft that regularly resupply the space station, ensuring redundancy in the event that one spacecraft or rocket runs into major issues. A third CRS vehicle – Sierra Nevada’s Dream Chaser spaceplane – will also begin cargo deliveries sometime next year.
NASA’s Commercial Crew Program was structured in the same way, with Boeing and SpaceX serving as two redundant crew transport providers. Of course, things didn’t go exactly according to plan and Boeing – despite receiving 60% (~$2B) more funding than SpaceX – has suffered numerous catastrophic issues in recent years, nearly dooming its Starliner spacecraft’s first uncrewed launch in December 2019 and ultimately delaying the company by two or more years.
After further issues delayed Starliner’s uncrewed do-over test flight (OFT-2) from August to late 2021 or early 2022, it’s entirely possible that SpaceX will operate as NASA’s sole crew transport solution for more than 18 months before Boeing flies a single astronaut. In other words, it’s likely that SpaceX will need to maintain the extraordinary cadence of Dragon launches demonstrated in 2021 well into 2022, and possibly even 2023. Since November 2020, SpaceX has launched three Cargo Dragon 2 resupply missions and eight astronauts on two Crew Dragons.
Another two NASA Dragon missions – Crew-3 and CRS-24 – are scheduled to launch in October and December 2021 and SpaceX’s first fully private Inspiration4 Crew Dragon launch could happen as early as September 15th. So long as Boeing’s Starliner is unable to fulfill its crew transport role, all future SpaceX Crew and Cargo missions for NASA – including Crew-3 and CRS-24 – will continue to see one Dragon meet another at the ISS. All told, barring possible delays to CRS-24, SpaceX is on track to launch eight Dragons – four Crew and four Cargo; 16 astronauts and 11 tons of space station supplies – in 13 months.
If Crew Dragon and Cargo Dragon 2 are considered to be two variants of the same Dragon 2 spacecraft, the only other instance in history where another orbital spacecraft came close to eight successful orbital launches in ~13 months was NASA’s Gemini Program, which completed eight crewed test flights in ~14 months in 1965 and 1966.
NASA’s Apollo spacecraft also completed six successful flights (5 crewed, 1 uncrewed) in 13 months in 1968 and 1969. Russian Soyuz vehicles – the most prolific crewed spacecraft in history – have also successfully flown 8 times in 13 months and 9 times in 14 months in the 1970s. Put simply, SpaceX’s Dragon program is now singlehandedly executing at or above the level of the two most prolific national space programs in history at funding peaks that haven’t been touched since and for a fraction of the cost.
News
Tesla hints toward Premium Robotaxi offering with Model S testing
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.
Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.
However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:
🚨 Tesla is using Model S vehicles fitted with LiDAR rigs to validate FSD and Robotaxi, differing from the Model Ys that it uses typically
Those Model Y vehicles have been on the East Coast for some time. These Model S cars were spotted in California https://t.co/CN9Bw5Wma8 pic.twitter.com/UE55hx5mdd
— TESLARATI (@Teslarati) December 11, 2025
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.
Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.
Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”
However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.
Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.
News
Rivian unveils self-driving chip and autonomy plans to compete with Tesla
Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.
Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.
Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.
CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.
He said:
“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”
At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:
“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”
The Hardware
Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.
It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.
Meet the Rivian Autonomy Processor.
Fast, smart, scalable and purpose-built for autonomous driving and the world of physical AI. Hitting the open road in 2026. pic.twitter.com/0wYXi5WKy7
— Rivian (@Rivian) December 11, 2025
RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.
ACM3 specs include:
- 1600 sparse INT8 TOPS (Trillion Operations Per Second).
- The processing power of 5 billion pixels per second.
- RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
- RAP1 is enabled by an in-house developed AI compiler and platform software
As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”
More Details
Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.
More than any other feature, our owners have asked for more hands-free miles.
With Universal Hands-Free, you can now enjoy hands-free assisted driving on any road with clearly defined lanes. That’s roughly 3.5 million miles in the U.S. and Canada.
Look for it in our next… pic.twitter.com/ZFhwVzvt6b
— Rivian (@Rivian) December 11, 2025
Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.
News
Tesla partners with Lemonade for new insurance program
Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”
Tesla owners in California, Oregon, and Arizona can now use Lemonade Insurance, the firm that recently said it could cover Full Self-Driving miles for “almost free.”
Lemonade, which offered the new service through its app, has three distinct advantages, it says:
- Direct Connection for no telematics device needed
- Better customer service
- Smarter pricing
The company is known for offering unique, fee-based insurance rates through AI, and instead of keeping unclaimed premiums, it offers coverage through a flat free upfront. The leftover funds are donated to charities by its policyholders.
On Thursday, it announced that cars in three states would be able to be connected directly to the car through its smartphone app, enabling easier access to insurance factors through telematics:
Lemonade customers who own @Tesla vehicles in California, Oregon, and Arizona can now connect their cars directly to the Lemonade app! ⚡🚘
Direct connection = no telematics device needed 📵
Better customer experience 💃
Smarter pricing with Lemonade 🧠This is a game-changer… pic.twitter.com/jbabxZWT4t
— Lemonade (@Lemonade_Inc) December 11, 2025
Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”
The strategy would be one of the most unique, as it would provide Tesla drivers with stable, accurate, and consistent insurance rates, while also incentivizing owners to utilize Full Self-Driving for their travel miles.
Tesla Full Self-Driving gets an offer to be insured for ‘almost free’
This would make FSD more cost-effective for owners and contribute to the company’s data collection efforts.
Data also backs Tesla Full Self-Driving’s advantages as a safety net for drivers. Recent figures indicate it was nine times less likely to be in an accident compared to the national average, registering an accident every 6.36 million miles. The NHTSA says a crash occurs approximately every 702,000 miles.
Tesla also offers its own in-house insurance program, which is currently offered in twelve states so far. The company is attempting to enter more areas of the U.S., with recent filings indicating the company wants to enter Florida and offer insurance to drivers in that state.