Connect with us

News

SpaceX unveils next-gen Starlink V2 Mini satellites ahead of Monday launch

Published

on

SpaceX has released official specifications and photos of its next-generation Starlink V2 Mini satellites, which are set to launch for the first time as early as Monday, February 27th.

The new satellites are the future of SpaceX’s Starlink constellation, and the information the company revealed helps demonstrate why.

SpaceX’s confusingly-named Starlink 6-1 mission will carry the first 21 Starlink V2 satellites into low Earth orbit (LEO) as early as 1:38 pm EST (18:38 UTC) on Monday, February 27th. The satellites will operate under SpaceX’s Starlink Gen2 FCC license, which currently allows the company to launch up to 7,500 of a nominal 29,998 satellites. At the same time as it continues to fill out its smaller 4,408-satellite Starlink Gen1 constellation with smaller V1.5 satellites, SpaceX has already begun launching the same smaller V1.5 satellites under the Gen2 license.

Eventually, those smaller and less capable satellites will likely be replaced with larger V2 satellites, but SpaceX appears to have decided that quickly adding suboptimal capacity is better than waiting for an optimal solution. In theory, that optimal solution is larger Starlink V2 satellites. As discussed in a previous FCC filing, SpaceX intends to operate up to three different types of Starlink satellites in its Starlink Gen2 constellation. The first variant is likely identical to the roughly 305-kilogram (~673 lb) Starlink V1.5 satellites that make up most of its Starlink Gen1 constellation.

Each Starlink V2 Mini satellite will have two massive 52.5-square-meter (565 sq ft) solar arrays and a ‘wingspan’ of around 30 meters (~100 ft).

Meanwhile, SpaceX has already built and delivered dozens of full-size Starlink V2 satellites to Starbase, Texas. Those more optimal spacecraft reportedly weigh anywhere from 1.25-2 tons (2750-4400 lb) each, offer almost 10 times more bandwidth than V1.5 satellites, and are so large and ungainly that they can only be launched by SpaceX’s next-generation Starship rocket. Starship is substantially delayed, however, so SpaceX chose to develop a third Starlink satellite variant combining many of the full-size V2 benefits into a package that can be launched by SpaceX’s existing Falcon 9 rocket.

Prior to SpaceX’s February 26th tweets, all that was known about those Starlink “V2 Mini” satellites were a few specifications included in a response to the FCC. The new information provided by SpaceX appears to confirm some of those specifications. For example, knowing that Falcon 9 will carry 21 V2 Mini satellites and that the rocket’s current payload record is 17.4 tons, each V2 Mini satellite likely weighs no more than 830 kilograms (~1830 lb). That’s very close to the 800-kilogram estimate provided in the October 2022 filing.

Advertisement

More importantly, SpaceX revealed that each Starlink V2 Mini satellite will have more powerful antennas and access to a new set of frequencies. Combined, each satellite will have up to “~4x more capacity…than earlier iterations” like Starlink V1. Compared to current V1.5 satellites, that means that Starlink V2 Mini could squeeze approximately 50% more network capacity out of each unit of satellite mass. As a result, even though the larger V2 Mini design has reduced the number of satellites Falcon 9 can launch almost threefold, the 21 V2 Mini satellites it can launch will add ~50% more bandwidth than the ~57 V1.5 satellites it would have otherwise launched.

The larger satellites mean that it will take three times as many Falcon 9 launches to expand Starlink V2 coverage, but the areas that are covered will have the capacity to serve several times more customers or deliver much higher bandwidth to the same number of customers.

SpaceX also announced that it has developed a new argon-fueled Hall effect thruster for Starlink V2 satellites. To avoid the high costs of xenon propellant, the most common choice of fuel for electric propulsion systems, SpaceX already developed a first-of-its-kind krypton Hall effect thruster for Starlink V1 and V1.5 satellites. Spread over the almost 4000 Starlink V1.x satellites SpaceX has launched since May 2019, the relatively low cost of krypton (roughly $500-1500/kg vs. $3000-10,000+/kg for xenon) has likely saved the company hundreds of millions of dollars.

The shift from krypton to argon could be similarly beneficial. Relative to krypton, the argon required to fuel Starlink V2 satellites will be practically free. 99.999%-pure argon can be purchased in low volumes for just $5 to $17 per kilogram, and each Starlink V2 Mini satellite will likely need less than 80 kilograms. SpaceX likely spent around $50 million (+/- $25M) on krypton for the almost 4000 Starlink V1 satellites it’s launched to date. As a result, even if every Starlink V2 satellite needs an excessive 200 kilograms of argon, fueling its next constellation of almost 30,000 V2 satellites could cost SpaceX less than fueling 4000 V1 satellites.

Tune in below around 1:30 pm EST (18:30 UTC) to watch SpaceX’s first Starlink V2 launch live.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y leads South Korea’s EV growth in 2025

Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y emerged as one of the segment’s single biggest growth drivers.

Published

on

Credit: Tesla Malaysia/X

South Korea’s electric vehicle market saw a notable rise in 2025, with registrations rising more than 50% and EV penetration surpassing 10% for the first time. 

Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y, which is imported from Gigafactory Shanghai, emerged as one of the segment’s single biggest growth drivers, as noted in a report from IT Home News.

As per the Korea Automobile and Mobility Industry Association’s (KAMA) 2025 Korea Domestic Electric Vehicle Market Settlement report, South Korea registered 220,177 new electric vehicles in 2025, a 50.1% year-over-year increase. EV penetration also reached 13.1% in the country, entering double digits for the first time. 

The Tesla Model Y played a central role in the market’s growth. The Model Y alone sold 50,397 units during the year, capturing 26.6% of South Korea’s pure electric passenger vehicle market. Sales of the Giga Shanghai-built Model Y increased 169.2% compared with 2024, driven largely by strong demand for the all-electric crossover’s revamped version.

Manufacturer performance reflected a tightly contested market. Kia led with 60,609 EV sales, followed closely by Tesla at 59,893 units and Hyundai at 55,461 units. Together, the three brands accounted for nearly 80% of the country’s total EV sales, forming what KAMA described as a three-way competitive market.

Advertisement

Imported EVs gained ground in South Korea in 2025, reaching a market share of 42.8%, while the share of domestically produced EVs declined from 75% in 2022 to 57.2% last year. Sales of China-made EVs more than doubled year over year to 74,728 units, supported in no small part by Tesla and its Model Y.

Elon Musk, for his part, has praised South Korean customers and their embrace of the electric vehicler maker. In a reply on X to a user who noted that South Koreans are fond of FSD, Musk stated that, “Koreans are often a step ahead in appreciating new technology.”

Continue Reading

News

Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report

Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip. 

Preparing for Tesla’s AI5/AI6 chips

As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.

The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building. 

Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.

Tesla’s aggressive AI chip roadmap

Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.

As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.

Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.

Continue Reading

Elon Musk

Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report

The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Published

on

the-boring-company-tesla-robotaxi
(Credit: The Boring Company

Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Potential Giga Nevada tunnel

Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.

The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.

Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

Relieving I-80 congestion

Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.

Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate. 

Advertisement

“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated. 

Continue Reading