Connect with us
A different angle of Falcon Heavy Flight 2's liftoff from Teslarati photographer Pauline Acalin. (Pauline Acalin) A different angle of Falcon Heavy Flight 2's liftoff from Teslarati photographer Pauline Acalin. (Pauline Acalin)

SpaceX

SpaceX preps for Cargo Dragon, Falcon Heavy launches despite setbacks

Published

on

Despite suffering the loss of the first Falcon Heavy Block 5 center core and a catastrophic failure of the first flight-proven Crew Dragon spacecraft in nearly the same week, SpaceX’s core operations continue as usual to prepare for multiple launches in the coming months.

The echoes of the past week’s failures and ‘anomalies’ will undoubtedly ring for months to come but SpaceX now finds itself in a unique situation. Despite the imminent start of a major failure investigation, it appears unlikely – at least for the time being – that it will impact the majority of Falcon 9 and Falcon Heavy launches planned for the rest of 2019. Currently on the Q2 2019 manifest are Cargo Dragon’s 17th operational mission (CRS-17), the first operational Starlink launch, Spacecom’s Amos-17 satellite, the Canadian Radarsat Constellation Mission (RCM), and Falcon Heavy’s third launch (STP-2).

Spotted on April 20th, this Falcon upper stage is most likely bound for the launch of either Starlink-1 or Amos-17.

Cargo Dragon – CRS-17

Following an April 20th explosion that destroyed Crew Dragon C201, SpaceX’s next launch – Cargo Dragon CRS-17 – has likely just become the most important in the near-term. Although Crew Dragon shares almost nothing directly in common with Cargo Dragon, both spacecraft still do come from the same lineage, relying on the same propellant and Draco maneuvering thrusters, as well as similar plumbing (excluding SuperDraco pods) and many of the same engineers and technicians.

On the other hand, Cargo Dragon has never suffered a catastrophic anomaly on the ground or in flight, although SpaceX has dealt with a fair share of less serious issues throughout the spacecraft’s operational life. Further, following the August 2017 launch of CRS-12, every CRS mission has launched with a flight-proven Cargo Dragon spacecraft. In fact, it’s quite likely that the CRS-12 Cargo Dragon capsule is the same spacecraft that has been refurbished for CRS-17, as it is currently the only flightworthy capsule to have only flown one orbital resupply mission.

It’s unclear which Falcon 9 booster has been assigned to CRS-17. NASA’s agreement with SpaceX for flight-proven boosters has been predicated on keeping those boosters ‘in-family’, so to speak, meaning that NASA will only accept flight-proven boosters if they have only flown NASA missions. The only booster that currently fits that bill is B1051, previously flown during Crew Dragon’s orbital launch debut on March 2nd, but B1051 has reportedly been assigned to SpaceX’s second Vandenberg launch of 2019 at the customer’s request. CRS-17 will thus likely launch on a new Falcon 9 booster (B1056). There is a chance that Crew Dragon’s catastrophic failure has severely contaminated the Landing Zone area with unburnt MMH and NTO, both of which are extraordinarily toxic to humans in even the tiniest of quantities.

Some launch-related questions may be answered in a NASA media briefing planned for 11am EDT, April 22nd. CRS-17 is scheduled to launch no earlier than 4:22 am EDT (08:22 UTC), April 30th.

Cargo Dragon capsule C113 and its expendable trunk depart the ISS after successfully completing CRS-12, September 2017. (NASA)
CRS-17’s fresh Cargo Dragon trunk is shown here with two major unpressurized payloads, the Orbiting Carbon Observatory 3 (OCO-3) and STP-H6, which will investigate communicating with X-rays, among other things. (SpaceX via NASA)

Starlink, Falcon Heavy, and more

Meanwhile, the Falcon upper/second stage (S2) spotted in the tweet at the top of the article serves as evidence of preparations for launches planned in May/June, as do a duo of first stage boosters spied during their own Cape Canaveral arrivals. All that’s missing to round out a busy week of SpaceX transportation is the appearance of one or several payload fairings, although CEO Elon Musk says that the company will try to reuse Falcon Heavy Flight 2’s fairing on the first Starlink launch.

Said Starlink launch – unofficially labeled Starlink-1 – is currently scheduled for liftoff no earlier than mid-May, likely making it the SpaceX mission that will follow CRS-17. The most likely Falcon 9 S1 candidate is the thrice-flown Block 5 booster B1046, a move that would retire risk otherwise transmitted to customers. SpaceX has now flown two separate Falcon 9 boosters (B1046 and B1048) three times without major issue, meaning that the fourth flight of the same booster (and beyond) will be new territory for reuse at some level.

B1046.3 landed aboard drone ship Just Read The Instructions after a successful third launch, December 2018. (SpaceX)
Falcon 9 B1048 returned to Port Canaveral on Feb. 24 after the rocket’s own third successful launch and landing. (Tom Cross)

Beyond Starlink-1, SpaceX has the communications satellite Amos-17 and Radarsat Constellation Mission (RCM), both of which are understood to be targeting launch no earlier than (NET) early June. Finally, Falcon Heavy Flight 3 – carrying the US Air Force’s STP-2 mission – is scheduled to launch NET June 22nd, although some additional delays are probable.

From a business-as-usual perspective, the fact that Crew Dragon C201 failed during intentional testing on the ground means that it will likely be SpaceX’s least commercially disruptive failure yet. This could change for any number of reasons, depending on the conclusions drawn by the joint NASA-SpaceX investigation soon to begin, and it’s far too early to draw far-reaching conclusions. Chances are good that the impact to non-Crew Dragon launches will be minimal but only time will tell as SpaceX begins to quite literally pick up the pieces and start a deep-dive analysis of all data gathered from Saturday’s failure.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starship’s next chapter: SpaceX eyes tower catch after flawless Flight 11

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Published

on

Credit: SpaceX

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Following Flight 11’s flawless mission, Musk noted on X that SpaceX will be aiming to catch the Starship Upper Stage with its launch tower as early as spring 2026. This should pave the way for SpaceX to start optimizing Starship for maximum reusability.

Flight 11 closes the Starship V2 chapter on a high note

Starship’s eleventh flight, which launched from Starbase, Texas, achieved every major mission objective. The Super Heavy booster completed a successful ascent, hover, and soft splashdown in the Gulf of America, while the upper stage executed an orbit burn, deployed Starlink simulators, and returned with a controlled reentry over the Indian Ocean.

This mission officially closed the chapter on the second-generation Starship and first-generation Super Heavy booster, and it set the stage for a redesigned vehicle built for orbital payload missions, propellant transfer, and beyond. It should be noted that Elon Musk has mentioned on X that Starship V3, at least if things go well, might be capable of reaching Mars.

Elon Musk confirms tower catch attempt set for spring

After Flight 11’s success, Musk confirmed that SpaceX will attempt to catch the Starship Upper Stage with its launch tower arms, fondly dubbed by the spaceflight community as “chopsticks,” in the coming months. Musk’s announcement came as a response to an X user who asked when the tower could start catching the Starship Upper Stage. In his reply, Musk simply wrote “Springtime.” 

Advertisement

Starship’s reusability is a key feature of the spacecraft, with SpaceX aiming to achieve a launch cadence that is almost comparable to conventional aircraft. For such a scenario to be feasible, launch tower catches of both Starship’s Upper Stage and its Super Heavy booster have to be routine.

Continue Reading

Elon Musk

SpaceX is preparing to launch Starship V2 one final time

The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

Published

on

Credit: SpaceX/X

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era. 

Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.

Starship V3 and beyond

Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet. 

“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”

Starship V2’s final mission

Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.

Advertisement

“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns. 

“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.

Continue Reading

News

Starlink makes a difference in Philippine province ravaged by typhoon

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Published

on

Credit: Starlink/X

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi). 

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Starlink units enhance connectivity

DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.

Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents. 

According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office. 

Advertisement

Game-changing technology

Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.

As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.

Continue Reading

Trending