Connect with us

SpaceX

SpaceX’s steel Starship gets new official render, this time with a huge NASA telescope

SpaceX's Starship pictured with the proposed LUVOIR B telescope in its payload bay, LUVOIR A in the background. (SpaceX/NASA/Teslarati)

Published

on

SpaceX recently provided NASA with the third known official render of its stainless steel Starship, focused on the vehicle’s potential utility for launching massive scientific spacecraft for NASA. Starship’s only direct competition for the proposed LUVOIR telescope: NASA’s own SLS rocket.

Published by NASA’s Goddard Space Flight Center (GSFC), Starship is shown with a smaller “B” variant of the proposed LUVOIR space telescope in its payload bay. According to a scientist from the Space Telescope Science Institute (STSI), the massive LUVOIR-A variant could “barely” fit inside Starship’s clamshell bay, but the telescope could also be tweaked to more perfectly fit the constraints of its chosen launch vehicle. LUVOIR is effectively being designed as a logical follow-up to the James Webb Space Telescope (JWST) and could be ready to launch no earlier than 2039 if NASA selects the idea – one of three under consideration – for future development.

The LUVOIR telescope (shorthand for Large UV/Optical/IR Surveyor) is currently grouped into two different categories, A and B. A is a full-scale, uncompromised telescope with a vast 15-meter primary mirror and a sunshade with an area anywhere from 5000 to 20000 square meters (1-4 acres). B is a smaller take on the broadband surveyor telescope, with an 8-meter primary mirror (a quarter of the area of LUVOIR-A’s) accompanied by a similarly reduced sunshade (and price tag, presumably).

— Teslarati, July 2018

Goddard’s “we asked, SpaceX checked” statement refers to a funded analysis of LUVOIR launch options the group announced back in July 2018, at which point the future prospects of NASA’s SLS rocket were far more stable. Approximately nine months later, NASA administrator Jim Bridenstine announced that all work on future SLS upgrades – including the Block 1B and Block 2 variants that could have supported the launch of LUVOIR-A – was to be halted as soon as possible. All of that funding would instead be focused on mitigating a never-ending string of delays and pushing SLS to actually prepare for its first launches. Bridenstine has since publicly waffled on that aggressive plan, simultaneously indicating that some of those SLS upgrades (mainly an advanced upper stage, EUS) would be critical for one variant of his proposal to return astronauts to the Moon as early as 2024.

Regardless, the blood of SLS is currently in the water as NASA pursues an answer to the question of whether commercial rockets can instead be used to launch the agency’s Orion spacecraft and Lunar Gateway segments. Based on preliminary interviews focused on NASA’s internal study of the subject, there is still plenty of room for SLS as long as its contractors (namely Boeing) can stem relentless delays, cost overruns, and quality control issues and finally prepare the rocket for its first missions.

As described above, it appears likely that NASA is going to require the SLS rocket’s core stage to conduct a critical mission-duration test fire before permitting the vehicle to begin launch preparations in Florida. As a result, there will be almost no conceivable way for the rocket to rise to the 2020 launch debut challenge issued by Bridenstine, potentially meaning that NASA will put significant resources into studying and developing alternatives to SLS. If or when NASA sets the precedent for allowing serious studies and funding of SLS alternatives, the death of the rocket will almost certainly be assured. Relative to commercial rockets like Falcon Heavy, New Glenn, Vulcan Heavy, and even SpaceX’s BFR (i.e. Starship/Super Heavy), conservative estimates suggest that SLS will be no less than 5-20+ times as expensive on a per-launch basis.

Consequently, it should come as no surprise to see NASA Goddard openly confirm its willingness to launch future flagship science missions on SpaceX’s Starship vehicle, so long as the rocket is successfully developed, launched, and certified by NASA for high-value missions. Given just how distant the proposed ~2039 launch of LUVOIR is and how early SpaceX is in the process of developing Starship/Super Heavy into a highly mature and reliable launch vehicle, one should not read too far into Goddard’s public support.

https://twitter.com/starkspace/status/1116336743584759810

However, there should be no doubt at this point that SpaceX’s next-generation Starship and current-generation Falcon Heavy rockets are already upsetting certain aspects of the status quo. If SpaceX continues to refine Starship’s design and demonstrate Falcon Heavy’s reliability and readiness, studies like Goddard’s LUVOIR launch case can be expected to crop up throughout domestic and global space industries, both pubic and private.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX and Elon Musk share insights on Starship Ship 36’s RUD

Starship Ship 36 experienced a Rapid Unscheduled Disassembly during a static fire attempt.

Published

on

Elon Musk and SpaceX provided an explanation for the Rapid Unscheduled Disassembly (RUD) of Starship Ship 36 on Wednesday. As per Musk, preliminary data suggests that a nitrogen composite overwrapped pressure vessel (COPV) in the vehicle’s payload bay failed below its proof pressure.

On Wednesday evening, Ship 36 experienced a RUD during a static fire attempt. Videos of the incident that were shared online showed Starship Ship 36 exploding into a massive fireball at its launchpad in Starbase, Texas. Images taken in the aftermath of the explosion showed significant damage to the plumbing in the area. The site’s pad structure was also destroyed.

Elon Musk shared some information immediately after the incident. In a response to a post from space enthusiast @Erdayastronaut, Musk stated that “Preliminary data suggests that a nitrogen COPV in the payload bay failed below its proof pressure.”

Musk also noted that, “If further investigation confirms that this is what happened, it is the first time ever for this design.”

SpaceX provided more insight into the incident in a post on its official website.

Advertisement

“After completing a single-engine static fire earlier this week, the vehicle was in the process of loading cryogenic propellant for a six-engine static fire when a sudden energetic event resulted in the complete loss of Starship and damage to the immediate area surrounding the stand.

“The explosion ignited several fires at the test site, which remains clear of personnel and will be assessed once it has been determined to be safe to approach. Individuals should not attempt to approach the area while safing operations continue,” SpaceX wrote in its post.

SpaceX highlighted that despite Starship Ship 36’s RUD, the incident will not result in any hazards to the surrounding communities in the Rio Grande Valley. And in a post on X, SpaceX also confirmed that everyone in the Starship team was safe and accounted for after Ship 36’s explosion.

While Ship 36’s RUD is a speed bump for the Starship program, SpaceX is a company that is known to grow stronger with every adversity. Thus, it would not be surprising if SpaceX implemented numerous improvements to Starship after this incident–improvements that would make the vehicle more reliable and safer than before.

Advertisement
Continue Reading

Elon Musk

SpaceX President meets India Minister after Starlink approval

Starlink’s India debut gets a boost as Gwynne Shotwell meets Comms Minister Scindia. Talks focused on Digital India’s goals.

Published

on

Starlink-router-fcc-approval-dish-upgrades

 

SpaceX’s Starlink India expansion gained momentum as SpaceX President and COO Gwynne Shotwell met with Communications Minister Jyotiraditya Scindia on Tuesday, following the company’s recent telecom license approval. The discussions focused on satellite communications to advance Digital India’s connectivity goals.

“Had a productive meeting with Ms. Gwynne Shotwell, President & COO of SpaceX, on India’s next frontier in connectivity. We delved into opportunities for collaboration in satellite communications to power Digital India’s soaring ambitions and empower every citizen across the country,” Scindia said.

India’s Communications Minister emphasized the transformative potential of satellite technologies, while Shotwell expressed gratitude for the license. Scindia noted: “Ms. Shotwell appreciated the license granted to Starlink, calling it a great start to the journey.”

Starlink India cleared a major regulatory hurdle after the Department of Telecommunications granted it a Global Mobile Personal Communication by Satellite (GMPCS) license. SpaceX secured the approval after a three-year wait.

Advertisement

In April, Starlink executives, including Vice President Chad Gibbs and Senior Director Ryan Goodnight, met Commerce Minister Piyush Goyal to discuss investments and partnerships, laying the groundwork for market entry. India’s satellite internet sector is heating up, with Eutelsat OneWeb and Reliance Jio also securing licenses, while Amazon’s Kuiper awaits approval.

Starlink India’s license enables SpaceX to initiate commercial operations within two months. The service will reportedly offer high-speed internet for ₹3,000 per month with unlimited data, requiring a ₹33,000 hardware kit, including a dish and router, targeting underserved and remote regions.

Starlink’s entry into India builds on its global network of over 7,000 satellites, designed to deliver low-latency internet to areas with limited broadband access. The company’s collaboration with Indian authorities and telecom giants like Reliance Jio and Bharti Airtel for distribution underscores its commitment to bridging the digital divide.

As Starlink prepares to launch services, its discussions with Scindia signal deepening ties with India’s government to support Digital India’s vision. “Satellite technologies are relevant and transformative,” Scindia noted, highlighting their role in empowering citizens. Starlink’s India expansion positions it to compete in a growing market, driving innovation and connectivity for millions in rural and remote areas.

 

Advertisement
Continue Reading

News

SpaceX Ax-4 Mission prepares for ISS with new launch date

SpaceX, Axiom Space, and NASA set new launch date for the Ax-4 mission after addressing ISS & rocket concerns.

Published

on

SpaceX-Ax-4-mission-iss-launch-date
(Credit: SpaceX)

SpaceX is preparing for a new launch date for the Ax-4 mission to the International Space Station (ISS).

SpaceX, Axiom Space, and NASA addressed recent technical challenges and announced a new launch date of no earlier than Thursday, June 19, for the Ax-4 mission. The delay from June 12 allowed teams to assess repairs to small leaks in the ISS’s Zvezda service module.

NASA and Roscosmos have been monitoring leaks in the Zvezda module’s aft (back) segment for years. However, stable pressure could also result from air flowing across the hatch seal from the central station. As NASA and its partners adapt launch schedules to ensure station safety, adjustments are routine.

“Following the most recent repair, pressure in the transfer tunnel has been stable,” a source noted, suggesting the leaks may be sealed.

“By changing pressure in the transfer tunnel and monitoring over time, teams are evaluating the condition of the transfer tunnel and the hatch seal between the space station and the back of Zvezda,” the source added.

Advertisement
https://www.teslarati.com/spacex-axiom-space-diabetes-research-iss/

SpaceX has also resolved a liquid oxygen leak found during post-static fire inspections of the Falcon 9 rocket, completing a wet dress rehearsal to confirm readiness. The Ax-4 mission is Axiom Space’s fourth private astronaut trip to the ISS. It will launch from NASA’s Kennedy Space Center in Florida on a Falcon 9 rocket with a new Crew Dragon capsule.

“This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.

The Ax-4 mission crew is led by Peggy Whitson, Axiom Space’s director of human spaceflight and former NASA astronaut. The Ax-4 crew includes ISRO astronaut Shubhanshu Shukla as pilot, alongside mission specialists Sławosz Uznański-Wiśniewski from Poland and Tibor Kapu from Hungary. The international team underscores Axiom’s commitment to global collaboration.

The Ax-4 mission will advance scientific research during its ISS stay, supporting Axiom’s goal of building a commercial space station. As teams finalize preparations, the mission’s updated launch date and technical resolutions position it to strengthen private space exploration’s role in advancing space-based innovation.

Advertisement
Continue Reading

Trending