Connect with us

News

SpaceX wins NASA funds to build and test Starship’s orbital refueling technology

SpaceX has won $3M from NASA to build and test the first full-scale Starship refueling nozzles. (SpaceX)

Published

on

On September 27th, NASA announced a new round of Tipping Point funding worth a total of $43.2M that will be dispersed among 14 separate companies, all focused on advancing “important technologies necessary for sustained exploration of the Moon and Mars.”

Aside from Blue Origin and a dozen others, SpaceX received $3M to work with NASA’s Marshall Space Flight Center (MSFC) to build and test “cryogenic fluid couplers”, a type of nozzle Starship will need to refuel in orbit.

Noted multiple times over the years (and in recent days) by both SpaceX and CEO Elon Musk, an extremely robust and reliable method of orbital refueling is essential to the success of Starship’s current designed – perhaps more so than any other single aspect of the next-generation launch vehicle. Although Starship-Super Heavy will likely offer respectable performance in single-launch mode, the implicit need to recover and reuse both booster and spacecraft takes a big chunk out of the rocket’s potential capabilities.

Starship needs a ton of extra hardware and propellant to enable recovery and reuse, critical to the spacecraft’s affordability. (SpaceX)

Much like Falcon 9 and Heavy must sacrifice performance for booster landings, Super Heavy will also need to retain some amount of propellant for its boostback and landing burns. However, while just 1 kg of orbital payload is lost for every ~5-10 kg of extra hardware and propellant on the booster, things are far more consequential when discussing orbital stage reusability. Every single kilogram of hardware and propellant meant for Starship recovery and reuse will result in a 1:1 reduction in payload capacity. This becomes highly consequential when recovering the spacecraft involves the addition of something like 100-200 metric tons worth of wings, fins, heat shield tiles, batteries, propellant, and more.

As such, SpaceX is faced with a conundrum: to make spaceflight truly cheap, full reusability is a necessity, but full reusability almost fundamentally constrains the resultant rocket’s performance and utility. SpaceX’s solution: prolific orbital refueling on the order of anywhere from 1-10+ dedicated tanker launches for every Starship launch. By refueling in Earth orbit, be it low Earth orbit or something much more eccentric, Starship can be extremely reusable while still offering performance that even a similarly-sized, fully-expendable rocket couldn’t begin to compete with.

Although the theory behind SpaceX’s strategy is undeniably sound, the fact remains that orbital refueling has never been tested anywhere close to the scale, speed, or reliability Starship will need for numerous in-orbit refuelings to be a practical solution. Assuming SpaceX uses every ounce of Starship and Super Heavy’s performance for each tanker launch to low Earth orbit (LEO), Starship will have to be able to repeatedly and rapidly transfer at least 150 metric tons (330,000 lb) of liquid oxygen and methane in microgravity conditions.

Two Starships meet in Earth orbit for a refueling mission. (SpaceX)

Without Earth’s gravity and the force of multiple Raptor engines to help things along, it could be quite a challenge to transfer hundreds of tons of propellant in a reasonable timeframe while in orbit. In fact, SpaceX already has Space Act Agreements in place with NASA centers to mature orbital propellant transfer technology. The September 27th award simply continues that relationship, although this particular case involves the first direct funding from NASA – meant to help SpaceX over the “tipping point”.

This time around, SpaceX will work directly with NASA MSFC to build and test actual prototypes of the nozzles (“cryogenic fluid couplers”) Starship will use to mate and refuel in orbit.

“SpaceX will collaborate with NASA’s Marshall Space Flight Center in Huntsville, Alabama, to develop and test coupler prototypes – or nozzles – for refueling spacecraft such as the company’s Starship vehicle. A cryogenic fluid coupler for large-scale in-space propellant transfer is an important technology to aid sustained exploration efforts on the Moon and Mars.”

NASA, 09/27/19

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Cybertruck

Tesla Cybertruck earns IIHS Top Safety Pick+ award

To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.

Published

on

Credit: IIHS/YouTube

The Tesla Cybertruck has achieved the Insurance Institute for Highway Safety’s (IIHS) highest honor, earning a Top Safety Pick+ rating for 2025 models built after April 2025. 

The full-size electric pickup truck’s safety rating is partly due to the vehicle’s strong performance in updated crash tests, superior front crash prevention, and effective headlights, among other factors. To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.

Cybertruck’s IIHS rating

As per the IIHS, beginning with 2025 Cybertruck models built after April 2025, changes were made to the front underbody structure and footwell to improve occupant safety in driver-side and passenger-side small overlap front crashes. The moderate overlap front test earned a good rating, and the updated side impact test also received stellar marks.

The Cybertruck’s front crash prevention earned a good rating in pedestrian scenarios, with the standard Collision Avoidance Assist avoiding collisions in day and night tests across child, adult crossing, and parallel paths. Headlights with high-beam assist compensated for limitations, contributing to the top award.

Safest and most autonomous pickup

The Cybertruck is one of only two full-size pickups to receive the IIHS’ Top Safety Pick + rating. It is also the only one equipped with advanced self-driving features via Tesla’s Full Self-Driving (Supervised) system. Thanks to FSD, the Cybertruck can navigate inner city streets and highways on its own with minimal supervision, adding a layer of safety beyond passive crash protection.

Advertisement
-->

Community reactions poured in, with users praising the vehicle’s safety rating amidst skepticism from critics. Tesla itself highlighted this by starting its X post with a short clip of a Cybertruck critic who predicted that the vehicle will likely not pass safety tests. The only question now is, of course, if the vehicle’s Top Safety Pick+ rating from the IIHS will help the Cybertruck improve its sales. 

Continue Reading

News

Tesla stands to gain from Ford’s decision to ditch large EVs

Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.

Published

on

Credit: Tesla

Ford’s recent decision to abandon production of the all-electric Ford F-150 Lightning after the 2025 model year should yield some advantages for Tesla.

The Detroit-based automaker’s pivot away from large EVs and toward hybrids and extended-range EVs that come with a gas generator is proof that sustainable powertrains are easy on paper, but hard in reality.

Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.

Here’s why:

Reduced Competition in the Electric Pickup Segment

The F-150 Lightning was the Tesla Cybertruck’s primary and direct rival in the full-size electric pickup market in the United States. With Ford’s decision to end pure EV production of its best-selling truck’s electric version and shifting to hybrids/EREVs, the Cybertruck faces significantly less competition.

Credit: Tesla

This could drive more fleet and retail buyers toward the Cybertruck, especially those committed to fully electric vehicles without a gas generator backup.

Strengthened Market Leadership and Brand Perception in Pure EVs

Ford’s pullback from large EVs–citing unprofitability and lack of demand for EVs of that size–highlights the challenges legacy automakers face in scaling profitable battery-electric vehicles.

Tesla, as the established leader with efficient production and vertical integration, benefits from reinforced perception as the most viable and committed pure EV manufacturer.

Credit: Tesla

This can boost consumer confidence in Tesla’s long-term ecosystem over competitors retreating to hybrids. With Ford making this move, it is totally reasonable that some car buyers could be reluctant to buy from other legacy automakers.

Profitability is a key reason companies build cars; they’re businesses, and they’re there to make money.

However, Ford’s new strategy could plant a seed in the head of some who plan to buy from companies like General Motors, Stellantis, or others, who could have second thoughts. With this backtrack in EVs, other things, like less education on these specific vehicles to technicians, could make repairs more costly and tougher to schedule.

Potential Increases in Market Share for Large EVs

Interestingly, this could play right into the hands of Tesla fans who have been asking for the company to make a larger EV, specifically a full-size SUV.

Customers seeking large, high-capability electric trucks or SUVs could now look to Tesla for its Cybertruck or potentially a future vehicle release, which the company has hinted at on several occasions this year.

With Ford reallocating resources away from large pure EVs and taking a $19.5 billion charge, Tesla stands to capture a larger slice of the remaining demand in this segment without a major U.S. competitor aggressively pursuing it.

Continue Reading

News

Ford cancels all-electric F-150 Lightning, announces $19.5 billion in charges

“Rather than spending billions more on large EVs that now have no path to profitability, we are allocating that money into higher returning areas, more trucks and van hybrids, extended range electric vehicles, affordable EVs, and entirely new opportunities like energy storage.”

Published

on

Credit: Ford Motor Co.

Ford is canceling the all-electric F-150 Lightning and also announced it would take a $19.5 billion charge as it aims to quickly restructure its strategy regarding electrification efforts, a massive blow for the Detroit-based company that was once one of the most gung-ho on transitioning to EVs.

The announcement comes as the writing on the wall seemed to get bolder and more identifiable. Ford was bleeding money in EVs and, although it had a lot of success with the all-electric Lightning, it is aiming to push its efforts elsewhere.

It will also restructure its entire strategy on EVs, and the Lightning is not the only vehicle getting the boot. The T3 pickup, a long-awaited vehicle that was developed in part of a skunkworks program, is also no longer in the company’s plans.

Instead of continuing on with its large EVs, it will now shift its focus to hybrids and “extended-range EVs,” which will have an onboard gasoline engine to increase traveling distance, according to the Wall Street Journal.

“Ford no longer plans to produce select larger electric vehicles where the business case has eroded due to lower-than-expected demand, high costs, and regulatory changes,” the company said in a statement.

While unfortunate, especially because the Lightning was a fantastic electric truck, Ford is ultimately a business, and a business needs to make money.

Ford has lost $13 billion on its EV business since 2023, and company executives are more than aware that they gave it plenty of time to flourish.

Andrew Frick, President of Ford, said:

“Rather than spending billions more on large EVs that now have no path to profitability, we are allocating that money into higher returning areas, more trucks and van hybrids, extended range electric vehicles, affordable EVs, and entirely new opportunities like energy storage.”

CEO Jim Farley also commented on the decision:

“Instead of plowing billions into the future knowing these large EVs will never make money, we are pivoting.”

Farley also said that the company now knows enough about the U.S. market “where we have a lot more certainty in this second inning.”

Continue Reading