Connect with us

News

SpaceX rolls largest rocket booster ever built to the launch pad

SpaceX has officially completed the first functional prototype of Super Heavy, now the largest rocket booster ever. (Starship Gazer)

Published

on

Six weeks after assembly began, SpaceX has completed Starship’s first true Super Heavy booster prototype, rolled it out of its ‘high bay’ nest, and installed the building-sized rocket at the launch pad.

Standing some 65 meters (~215 ft) tall, Super Heavy Booster 3 (B3) is the same height as an entire two-stage Falcon rocket and Dragon spacecraft and is expected to singlehandedly weigh six times more than a fully-fueled Falcon 9 when loaded with liquid oxygen and methane propellant. Once Super Heavies are eventually outfitted with a full 32 Raptors, more engines than any other rocket in history, the booster will also produce more than twice the thrust of NASA’s Saturn V Moon rocket – still the most powerful vehicle ever successfully flown.

Assembled out of 36 steel rings, three tank domes, and dozens of other major components, Super Heavy B3 borrows heavily from the Starship production apparatus SpaceX has built and refined over the last ~18 months. Boosters use the same welding and integration jigs, facilities, and strategies and are built out of the same steel rings, stringers, stiffeners, and dome ‘gores.’

In some ways, Super Heavy boosters are actually a good deal simpler than Starships, which require a custom nose cone, secondary ‘header’ tanks, extra plumbing, actuating flaps, a heat shield with thousands of tiles, and more. Boosters, by comparison, require no heat shield and only need two main tanks made out of identical steel rings. However, all three Super Heavy domes (forward, common, and thrust) are mostly custom or require major modifications on top of parts shared with Starship domes.

A panorama of Super Heavy Booster 3, now the largest rocket stage in the world. (Starship Gazer)

Speaking on June 30th, Elon Musk revealed that Booster 3 was “very hard to build” and would be exclusively used for ground tests, reiterating that Super Heavy B4 is currently the first booster scheduled to fly. Curiously, the SpaceX CEO also said that “much of [Super Heavy’s] design” would be changed between Booster 3 and Booster 4, raising questions about what the company hopes to gain from Booster 3 “ground tests.”

Regardless, those tests are now on track to begin as early as Monday, July 6th after SpaceX transported Super Heavy Booster 3 from the factory to the launch pad and rapidly installed the rocket on a test platform on July 1st. Following in the footsteps of Starship, Super Heavy’s first hurdle will likely be an ambient proof test, in which nitrogen gas is used to check for leaks and verify general structural integrity under pressure.

Advertisement

Once complete, Booster 3 will be put through a cryogenic proof test, effectively replacing gaseous nitrogen with its supercooled liquid equivalent to simulate the immense thermal and mechanical stress incurred by similarly cold liquid oxygen and methane propellant. How exactly that test will be done is unclear given that Super Heavy can feasibly hold more than 3100 tons of liquid nitrogen and nowhere near that much storage capacity has been installed. The most important goal of cryo proof testing is to demonstrate that Super Heavy is structurally sound with its tanks pressurized to nominal flight pressures – likely at least 7-8 bar (~100-120 psi).

If successful, there are two possible routes SpaceX could go: more cryogenic proof testing at higher (and thus potentially destructive) pressures or static fire testing with one or several Raptor engines installed. Given Musk’s statement that the first flightworthy Super Heavy booster would implement major design changes, it’s unclear if Booster 3 is of a high enough fidelity to warrant static fire testing or if SpaceX has effectively turned the Super Heavy prototype into a massive ‘test tank’ instead.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Comments

Elon Musk

Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline

Tesla continues to double down on its June goal to launch the Robotaxi ride-hailing platform.

Published

on

Credit: Tesla

Tesla has doubled down on its potential launch date for the Robotaxi ride-hailing platform, which will utilize the Cybercab and other vehicles in its lineup to offer driverless rides in Austin, Texas.

Tesla said earlier this year that it was in talks with the City of Austin to launch its first Robotaxi rides, and it planned to launch the platform in June.

This has been a widely discussed timeline in the community, with some confident in the company’s ability to offer it based on the progress of the Full Self-Driving suite.

However, others are skeptical of it based on Tesla’s history of meeting timelines, especially regarding its rollout of FSD.

Nevertheless, Tesla was asked when it would be able to offer Robotaxi rides and where, and it clearly is not backing down from that June date:

It is getting to a point where Tesla is showing incredible confidence regarding the rollout of the Robotaxi in June. We have not seen this kind of reiteration regarding the rollout of something regarding autonomy from Tesla at any point in the past.

CEO Elon Musk has even been increasingly confident that Tesla will meet its target. Earlier this week, he said the vehicles will be able to roll off production lines and drive themselves straight to a customer’s house:

Elon Musk continues to push optimistic goal for Tesla Full Self-Driving

There could be some discussion of an acceptable grace period, as the timeline for the Robotaxi rollout could still be considered a success, even if it were a month or two late. However, if it were pushed back further into 2025 or even 2026, skepticism regarding these timelines would continue to persist.

As of right now, it seems Tesla is extremely confident it will meet its goal.

Continue Reading

Elon Musk

Tesla Semi fleet from Frito-Lay gets more charging at Bakersfield factory

Published

on

Tesla Semis showcased at Frito-Lay plant in Modesto, CA
Frito-Lay transformed its Modesto, Calif., site by replacing diesel fleet assets with ZE and NZE alternatives and installing fueling and charging infrastructure for the new fleet as well as on-site renewable energy generation and storage.

Among the several companies that have had the opportunity to add Tesla Semi all-electric Class 8 trucks to their fleets earlier than others, the most notable is arguably Frito-Lay, which has utilized the vehicle for a couple of years now.

However, as their fleet is making more local runs and there are undoubtedly plans to expand to more Semi units, the company has recognized it needs additional Megachargers to give juice to their trucks.

As a result, Frit-Lay decided to build more chargers at their Bakersfield, California facility, according to new permits filed by Tesla:

There are already chargers at the company’s Modesto, California, factory, but Bakersfield is roughly three hours south of Modesto.

Interestingly, Tesla is calling the chargers “Semi Chargers” in the filing, potentially hinting that it is no longer referring to them as “Megachargers,” as they have been in the past. This is a relatively minor detail, but it is worth taking note of.

In 2022, Frito-Lay began installing these chargers in preparation for the Semi to become one of the company’s main logistics tools for deliveries in California and surrounding states.

Frito-Lay is not the only company that has chosen to utilize the Tesla Semi for these early “pilot” runs. PepsiCo has also been a company that has used the Semi very publicly over the past two years.

Additionally, the Tesla Semi participated in the Run on Less EV trucking study back in late 2023, where it managed to complete a 1,000-mile run in a single day:

Tesla Semi logs 1,000-mile day in Run on Less EV trucking study

Tesla is planning to ramp production of the Semi late this year. On the Q4 2024 Earnings Call, VP of Vehicle Engineering Lars Moravy said the company would be focusing on the first builds of the Semi’s high-volume design late this year before ramping production in the early portion of 2026:

“We just closed out the Semi factory roof and walls last week in Reno, a schedule which is great with the weather. In Reno, you never know what’s going to happen. But we’re prepping for mechanical installation of all the equipment in the coming months. The first builds of the high-volume Semi design will come late this year in 2025 and begin ramping early in 2026.”

Tesla will build these units at a new Semi production facility located in Reno near its Gigafactory. The company is getting closer to finishing construction, as a drone video from this morning showed the facility is coming along at a good pace:

Continue Reading

News

Tesla Cybercab no longer using chase vehicles in Giga Texas

Elon Musk expects Tesla to produce about 2 million Cybercab units per year.

Published

on

Credit: Joe Tegtmeyer/X

The Tesla Cybercab is the company’s first vehicle that is designed solely for autonomous driving. And while the spacious two-seater is expected to start volume production in 2026, the vehicle’s development seems to be moving at a steady pace.

This was hinted at in recent images taken by a longtime Tesla watcher at the Giga Texas complex.

Tesla Cybercab Production

The Cybercab will likely be Tesla’s highest volume vehicle, with CEO Elon Musk stating during the company’s Q1 2025 All-Hands meeting that the robotaxi’s production line will resemble a high-speed consumer electronics line. Part of this is due to Tesla’s unboxed process, which should make the Cybercab easy to produce.

Elon Musk expects Tesla to produce about 2 million Cybercabs per year. And while the vehicle is expected to see volume production at Giga Texas next year, the CEO noted that the vehicle will be manufactured in more than one facility when it is fully ramped.

No More Chase Cars

While the Cybercab is not yet being produced, Tesla is evidently busy testing the vehicle’s fully autonomous driving system. This could be hinted at by the Cybercabs that have been spotted around the Giga Texas complex over the past months. Following last year’s We, Robot event, drone operators such as longtime Tesla watcher Joe Tegtmeyer have spotted Cybercabs being tested around the Giga Texas complex.

Advertisement

At the time, videos from Giga Texas showed that the driverless Cybercabs were always accompanied by a manually driven Model 3 validation chase car. This was understandable considering that the Giga Texas complex features pedestrians, other cars, and construction areas. As per the drone operator in a recent post on social media platform X, however, Tesla seems to have stopped using chase cars for its Cybercab tests a few weeks ago.

Aggressive Tints

The reasons behind this alleged update are up for speculation, though it would not be surprising if the Cybercab’s autonomous driving system could now safely navigate the Gigafactory Texas complex on its own. Interestingly enough, the Cybercabs that were recently photographed by the drone operator featured very aggressive tint, making it almost impossible to make out the interior of the robotaxi.

This is quite interesting as other Cybercabs that have been spotted around Giga Texas were only equipped with semi-dark tints. One such vehicle that was spotted in February was even speculated to be fitted with an apparent steering wheel.

Continue Reading

Trending