Connect with us

News

Tesla’s 1 million-mile battery takes a step forward with new electrode patent

Tesla Gigafactory 1, where Model 3 battery cells are produced. (Photo: Tesla)

Published

on

A newly released patent from Tesla has teased what appears to be a step towards Elon Musk’s one-million-mile battery target. The patent describes a new lithiation process for battery cells, which has the potential to improve the quality of cells and possibly even save on costs.

Tesla has submitted a patent titled “Method for Synthesizing Nickel-Cobalt-Aluminum Electrodes.” The document outlines a new electrode synthesizing method that could be used for battery cell production. The proposed application defines an efficient heating process for Nickel-Cobalt-Aluminum (NCA) electrodes. According to the document, previous heating methods at times cause the formation of a lithium substrate known as L15AIO4, which is an impurity. Lowering the amount of lithium within a battery reduces the presence of the contamination, but also leads to “materials with inferior electrochemical properties.”

As noted in the patent, batteries would heat to a temperature high enough to allow for single crystal growth. The revised ratio of lithium to other metals would limit the formation of impurities during the first heating process. Then, the battery would be heated a second time at a temperature lower than the first heating cycle. Researchers involved in the patent noted that this process helped develop an impurity-free single crystal NCA that allowed battery cells to achieve over 4,000 charge cycles.

Lithiation measurements at different temperatures. (Credit: Tesla/U.S. Patent Office)

The patent outlines the heating process:

“Methods disclosed herein include a first lithiation step, wherein a lithium and an other metal component are present in a first lithium/other metal ratio of less than 1.0 and are sintered at a temperature between 800 and 950°C for a time period between 1 and 24 hours to obtain a first lithiated material. The method further includes a second lithiation step, wherein a lithium and a other metal component are present in a second lithium/other metal ratio and further wherein the first lithiated electrode material is sintered with additional LiOHTLO at between 650 and 760°C for a time period between 1 and 24 hours to obtain a second lithiated material.”

In summary, the use of NCA electrodes in batteries would allow for single-crystal materials to present themselves without impurities. The lack of contaminants could lead to an increased lifespan of the cells altogether, helping Tesla take a giant leap forward in its quest to produce a one-million-mile battery for its vehicles.

Advertisement
-->

Interestingly enough, one of the listed names on the patent is battery expert and researcher Jeff Dahn, who has worked with Tesla in the past. Tesla summoned the help of Dahn, who leads a team of researchers at Canada’s Dalhousie University, to help the electric car maker improve its batteries. Dahn’s research has helped Tesla’s development of high-quality battery cells by inventing new electrode combinations, like the one described in this patent, and electrolyte solutions aimed at further increasing battery life.

Tesla’s batteries are always in a state of improvement, and over the years, the cells that the company utilizes for its vehicles and energy storage systems have gotten more energy-dense. Economies of scale that is made possible with facilities such as Gigafactory Nevada have also gone a long way towards helping Tesla near the $100 per kWh mark, a level that is widely considered the point where electric vehicles could achieve price parity with their internal combustion-powered counterparts.

Apart from its battery patents, Tesla has also been busy acquiring several battery companies. Among these are Maxwell Technologies and Hibar Systems, both of which were developing technologies that would allow for better battery quality and more efficient production costs. Relatively simple developments such as those described in Tesla’s recent patent help this cause too, especially since every little bit of optimization helps.

Tesla’s development of its battery technology could lead to its vehicles lasting 20 to 30 years, far longer than petrol-powered cars. It appears the company is planning to create a product line that could stay with owners for extended periods with relatively no annual maintenance. And that, together with price parity, can very well be the catalyst for society’s acceleration towards sustainability.

The full text of Tesla’s “Method for Synthesizing Nickel-Cobalt-Aluminum Electrodes” patent could be accessed in the document below.

Advertisement
-->

METHOD FOR SYNTHESIZING NIC… by Joey Klender on Scribd

Joey has been a journalist covering electric mobility at TESLARATI since August 2019. In his spare time, Joey is playing golf, watching MMA, or cheering on any of his favorite sports teams, including the Baltimore Ravens and Orioles, Miami Heat, Washington Capitals, and Penn State Nittany Lions. You can get in touch with joey at joey@teslarati.com. He is also on X @KlenderJoey. If you're looking for great Tesla accessories, check out shop.teslarati.com

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading