News
Tesla’s 1 million-mile battery takes a step forward with new electrode patent
A newly released patent from Tesla has teased what appears to be a step towards Elon Musk’s one-million-mile battery target. The patent describes a new lithiation process for battery cells, which has the potential to improve the quality of cells and possibly even save on costs.
Tesla has submitted a patent titled “Method for Synthesizing Nickel-Cobalt-Aluminum Electrodes.” The document outlines a new electrode synthesizing method that could be used for battery cell production. The proposed application defines an efficient heating process for Nickel-Cobalt-Aluminum (NCA) electrodes. According to the document, previous heating methods at times cause the formation of a lithium substrate known as L15AIO4, which is an impurity. Lowering the amount of lithium within a battery reduces the presence of the contamination, but also leads to “materials with inferior electrochemical properties.”
As noted in the patent, batteries would heat to a temperature high enough to allow for single crystal growth. The revised ratio of lithium to other metals would limit the formation of impurities during the first heating process. Then, the battery would be heated a second time at a temperature lower than the first heating cycle. Researchers involved in the patent noted that this process helped develop an impurity-free single crystal NCA that allowed battery cells to achieve over 4,000 charge cycles.

The patent outlines the heating process:
“Methods disclosed herein include a first lithiation step, wherein a lithium and an other metal component are present in a first lithium/other metal ratio of less than 1.0 and are sintered at a temperature between 800 and 950°C for a time period between 1 and 24 hours to obtain a first lithiated material. The method further includes a second lithiation step, wherein a lithium and a other metal component are present in a second lithium/other metal ratio and further wherein the first lithiated electrode material is sintered with additional LiOHTLO at between 650 and 760°C for a time period between 1 and 24 hours to obtain a second lithiated material.”
In summary, the use of NCA electrodes in batteries would allow for single-crystal materials to present themselves without impurities. The lack of contaminants could lead to an increased lifespan of the cells altogether, helping Tesla take a giant leap forward in its quest to produce a one-million-mile battery for its vehicles.
Interestingly enough, one of the listed names on the patent is battery expert and researcher Jeff Dahn, who has worked with Tesla in the past. Tesla summoned the help of Dahn, who leads a team of researchers at Canada’s Dalhousie University, to help the electric car maker improve its batteries. Dahn’s research has helped Tesla’s development of high-quality battery cells by inventing new electrode combinations, like the one described in this patent, and electrolyte solutions aimed at further increasing battery life.
Tesla’s batteries are always in a state of improvement, and over the years, the cells that the company utilizes for its vehicles and energy storage systems have gotten more energy-dense. Economies of scale that is made possible with facilities such as Gigafactory Nevada have also gone a long way towards helping Tesla near the $100 per kWh mark, a level that is widely considered the point where electric vehicles could achieve price parity with their internal combustion-powered counterparts.
Apart from its battery patents, Tesla has also been busy acquiring several battery companies. Among these are Maxwell Technologies and Hibar Systems, both of which were developing technologies that would allow for better battery quality and more efficient production costs. Relatively simple developments such as those described in Tesla’s recent patent help this cause too, especially since every little bit of optimization helps.
Tesla’s development of its battery technology could lead to its vehicles lasting 20 to 30 years, far longer than petrol-powered cars. It appears the company is planning to create a product line that could stay with owners for extended periods with relatively no annual maintenance. And that, together with price parity, can very well be the catalyst for society’s acceleration towards sustainability.
The full text of Tesla’s “Method for Synthesizing Nickel-Cobalt-Aluminum Electrodes” patent could be accessed in the document below.
METHOD FOR SYNTHESIZING NIC… by Joey Klender on Scribd
News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.
Elon Musk
Elon Musk’s xAI closes upsized $20B Series E funding round
xAI announced the investment round in a post on its official website.
xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development.
xAI announced the investment round in a post on its official website.
A $20 billion Series E round
As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others.
Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.
As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”
xAI’s core mission
Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.
xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5.
“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote.