Connect with us

News

Tesla’s 4680 cell production process outlined in Giga Berlin’s revised filings

Credit: Tesla, Tobias Lindh/Twitter

Published

on

Tesla’s revised documents for Gigafactory Berlin have been posted online, and they are a treasure trove of information. The documents provided some new details about Tesla’s planned 4680 battery plant in Gigafactory Berlin, which Elon Musk noted is on track to be one of the world’s largest battery production facilities. They also outlined how Tesla’s 4680 cells are produced. 

While sections of the filing pertaining to the planned 4680 battery cell plant in Giga Berlin were blacked out due to sensitive information that could not be made public, the documents show some important tidbits about the upcoming facility. This includes the facility’s cell production operations over four floors, with anode and cathode production on the first floor and tabless cell production on the third floor. The battery plant is massive, requiring large foundations similar to Gigafactory Berlin’s Phase 1 zone. 

Most importantly, Tesla also submitted a simplified diagram of its 4680 battery cell production process, though most of the diagram was blacked out in the revised filing’s public release. However, the company provided a brief overview of how its new battery cell will be produced in the upcoming facility (roughly translated through Google Translate). 

Advertisement
-->

“The battery the Gigafactory Berlin requires special systems and process steps. The anodes and cathodes consist of coated current collector foils. Copper is used as the material for the anode foil and aluminum is used for the cathode foil. The anode and cathode components are manufactured in mixed processes (A020-01 and A020-02), which only use materials in powder form. The new materials used are tested and approved in our own laboratory (A020-11). 

“In order for the powder coating to adhere to the two films, they must first be pre-coated with a thin layer of adhesive (substrate) (A020-03 and A020-04). This substrate is delivered in containers. The pre-coating is necessary because a dry coating with powder takes place. After the anode and cathode components have been mixed, they are applied as a coating to the respective substrate-coated film in order to establish electrical contact (A020-05 and A020-06). The current collector foils, coated with the anode or cathode components, result in the finished anode or cathode. 

The revised filings also provided a general idea of how Tesla’s tabless cell production works. Among these is the fact that the finished 4680 cells would be subjected to 10 days’ worth of curing after their formation. 

Advertisement
-->

“The anode or cathode is then cut to the required lengths with a laser in the “tabless process” (A020-08). The anode, the cathode and the separator are alternately placed one on top of the other and rolled up into a roll. This roller is then inserted into a metal housing, which is manufactured from steel rollers in a die-cutting and deep-drawing process (A020-07). In the assembly area, the final assembly and filling of the cell takes place with small amounts of electrolyte (approx. 10% of the cell weight) (A020-09). 

“The electrolyte is absorbed by the electrode coatings and enables the lithium ions to move back and forth between the anode and cathode. The housing is then closed with a lid in a welding process. The last step is the formation (A020-10) of the cell. In the formation process, the cell is electrically started up by charging and discharging it under different temperature conditions. The finished cell remains in this area for approx. 10 days and is then put to further use. The cells produced are subjected to random quality control in our own laboratory (A020-11).” 

A link to Tesla’s filings for Gigafactory Berlin could be found here

Do you have anything to share with the Teslarati Team? We’d love to hear from you, email us at tips@teslarati.com.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Advertisement
-->

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

Advertisement
-->

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Advertisement
-->
Continue Reading

Elon Musk

Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price. 

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.

Delaware Supreme Court makes a decision

In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”

The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.

A hard-fought victory

As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.

Advertisement
-->

The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.

Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez

Continue Reading

News

Tesla Cybercab tests are going on overdrive with production-ready units

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.

Published

on

Credit: @JT59052914/X

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.

Recent Cybercab sightings

Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.

The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.

Production design all but finalized?

Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.

There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious. 

Advertisement
-->
Continue Reading