Connect with us

News

Tesla MIT study concludes that drivers maintain vigilance when using Autopilot

[Credit: LivingTesla/YouTube]

Published

on

Tesla owners using Autopilot are highly engaged when driving with the feature despite fears to the contrary, according to a study recently published by scientists at MIT titled Human Side of Tesla Autopilot: Exploration of Functional Vigilance in Real-World Human-Machine Collaboration.

The data used in the study was generated from the over 1 billion miles driven by Tesla owners since its activation in 2015, about 35% of which were determined to be assisted by Autopilot. Of these, 18,928 disengagements of Autopilot were annotated, which indicated instances when drivers took over during challenging driving situations. Overall, the numbers demonstrate a high rate of driver vigilance.

Tesla has provided a unique opportunity to form a baseline for objective, representative analysis of real-world use of Autopilot, as stated in the study:

“Due to its scale of deployment and individual utilization, [Tesla’s] Autopilot serves as perhaps the currently best available opportunity to study and understand human interaction with AI assisted vehicles ‘in the wild’…naturalistic driving research can now begin investigating and identify both promising and concerning trends in drivers’ behavioral patterns in the context of Autopilot.”

Results graph from “Human Side of Tesla Autopilot” Study. | Credit: MIT

As automation has expanded over the last several decades, a pattern of overtrust in reliable automated systems has been shown by human behavior research studies. In the context of driving scenarios where property damage, injury, or death are possible consequences, the concern with the transition to semi-autonomous systems relying on driver input to function safely is obviously significant. The results of the MIT study are therefore promising, initially showing an approach to automation in driving systems that’s more careful than other areas.

“The two main results of this work are that (1) drivers elect to use Autopilot for a significant percent of their driven miles and (2) drivers do not appear to over-trust the system to a degree that results in significant functional vigilance degradation in their supervisory role of system operation,” the MIT scientists concluded.

Advertisement
-->

The study further notes that more research will be needed as more data becomes available and more familiarity grows with Autopilot’s features.

Tesla has received a fair amount of criticism and attention whenever an accident involves one of its cars, especially if Autopilot was engaged around the time of the event. However, Tesla consistently maintains its position that the feature is not yet fully autonomous and requires drivers to both pay attention and intervene when necessary while Autopilot is in operation. The program is additionally equipped with several alerts which give drivers audio and visual warnings if hands are not detected on the steering wheel, something found to have been ignored in some prior crash events, playing into concerns the MIT study sought to address.

The Tesla Model 3’s ratings from the National Highway Traffic Safety Administration. [Credit: NHTSA]

Beginning in Q3 2018, Tesla has been releasing quarterly Vehicle Safety Reports providing updated numbers for vehicle incidents occurring both when Autopilot was engaged and when the driver-assist feature was deactivated. For Q3, the company reported one accident or crash-like event for every 3.34 million miles driven with Autopilot active and one event for every 1.92 million miles driven with Autopilot disengaged. In Q4 2018, those numbers dropped slightly, possibly due to winter conditions, to one accident for every 2.91 million miles driven with Autopilot engaged and one accident for every 1.58 million miles driven without.

By comparison, the National Highway Traffic Safety Administration’s (NHTSA) most recent data at the time showed a crash event every 436,000 miles, a figure which includes all vehicles in the US whether or not the cars are equipped with driving enhancement software. Tesla’s numbers further include both accidents that have occurred and “near-misses”, and the NHTSA’s figures only include accidents that actually transpired.

Along with touting a correlation between lower accident rates and Autopilot being engaged, Tesla also maintains its title of producing the safest cars in the world based on NHTSA test results.

Advertisement
-->

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Investor's Corner

Tesla analyst realizes one big thing about the stock: deliveries are losing importance

Published

on

Credit: Joe Tegtmeyer | YouTube

Tesla analyst Dan Levy of Barclays realized one big thing about the stock moving into 2026: vehicle deliveries are losing importance.

As a new era of Tesla seems to be on the horizon, the concern about vehicle deliveries and annual growth seems to be fading, at least according to many investors.

Even CEO Elon Musk has implied at times that the automotive side, as a whole, will only make up a small percentage of Tesla’s total valuation, as Optimus and AI begin to shine with importance.

He said in April:

“The future of the company is fundamentally based on large-scale autonomous cars and large-scale and large volume, vast numbers of autonomous humanoid robots.”

Levy wrote in a note to investors that Tesla’s Q4 delivery figures “likely won’t matter for the stock.” Barclays said in the note that it expects deliveries to be “soft” for the quarter.

In years past, Tesla analysts, investors, and fans were focused on automotive growth.

Cars were truly the biggest thing the stock had to offer: Tesla was a growing automotive company with a lot of prowess in AI and software, but deliveries held the most impact, along with vehicle pricing. These types of things had huge impacts on the stock years ago.

In fact, several large swings occurred because of Tesla either beating or missing delivery estimates:

  • January 3, 2022: +13.53%, record deliveries at the time
  • January 3, 2023: -12.24%, missed deliveries
  • July 2, 2024: +10.20%, beat delivery expectations
  • October 3, 2022: -8.61%, sharp miss due to Shanghai factory shutdown
  • July 2, 2020: +7.95%, topped low COVID-era expectations with sizeable beat on deliveries

It has become more apparent over the past few quarters that delivery estimates have significantly less focus from investors, who are instead looking for progress in AI, Optimus, Cybercab, and other projects.

These things are the future of the company, and although Tesla will always sell cars, the stock is more impacted by the software the vehicle is running, and not necessarily the vehicle itself.

Continue Reading

News

Tesla removes Safety Monitors, begins fully autonomous Robotaxi testing

This development, in terms of the Robotaxi program, is massive. Tesla has been working incredibly hard to expand its fleet of Robotaxi vehicles to accommodate the considerable demand it has experienced for the platform.

Published

on

Credit: @Mandablorian | X

Tesla has started Robotaxi testing in Austin, Texas, without any vehicle occupants, the company’s CEO Elon Musk confirmed on Sunday. Two Tesla Model Y Robotaxi units were spotted in Austin traveling on public roads with nobody in the car.

The testing phase begins just a week after Musk confirmed that Tesla would be removing Safety Monitors from its vehicles “within the next three weeks.” Tesla has been working to initiate driverless rides by the end of the year since the Robotaxi fleet was launched back in June.

Two units were spotted, with the first being seen from the side and clearly showing no human beings inside the cabin of the Model Y Robotaxi:

Another unit, which is the same color but was confirmed as a different vehicle, was spotted just a few moments later:

The two units are traveling in the general vicinity of the South Congress and Dawson neighborhoods of downtown Austin. These are located on the southside of the city.

This development, in terms of the Robotaxi program, is massive. Tesla has been working incredibly hard to expand its fleet of Robotaxi vehicles to accommodate the considerable demand it has experienced for the platform.

However, the main focus of the Robotaxi program since its launch in the Summer was to remove Safety Monitors and initiate completely driverless rides. This effort is close to becoming a reality, and the efforts of the company are coming to fruition.

It is a drastic step in the company’s trek for self-driving technology, as it plans to expand it to passenger vehicles in the coming years. Tesla owners have plenty of experience with the Full Self-Driving suite, which is not fully autonomous, but is consistently ranked among the best-performing platforms in the world.

Continue Reading

News

Tesla refines Full Self-Driving, latest update impresses where it last came up short

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Published

on

Credit: TESLARATI

Tesla released Full Self-Driving v14.2.1.25 on Friday night to Early Access Program (EAP) members. It came as a surprise, as it was paired with the release of the Holiday Update.

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

With Tesla Full Self-Driving v14.2.1, there were some serious regressions. Speed Profiles were overtinkered with, causing some modes to behave in a strange manner. Hurry Mode was the most evident, as it refused to go more than 10 MPH over the speed limit on freeways.

It would routinely hold up traffic at this speed, and flipping it into Mad Max mode was sort of over the top. Hurry is what I use most frequently, and it had become somewhat unusable with v14.2.1.

It seemed as if Speed Profiles should be more associated with both passing and lane-changing frequency. Capping speeds does not help as it can impede the flow of traffic. When FSD travels at the speed of other traffic, it is much more effective and less disruptive.

With v14.2.1.25, there were three noticeable changes that improved its performance significantly: Speed Profile refinements, lane change confidence, and Speed Limit recognition.

Speed Profile Refinement

Speed Profiles have been significantly improved. Hurry Mode is no longer capped at 10 MPH over the speed limit and now travels with the flow of traffic. This is much more comfortable during highway operation, and I was not required to intervene at any point.

With v14.2.1, I was sometimes assisting it with lane changes, and felt it was in the wrong place at the wrong time more frequently than ever before.

However, this was one of the best-performing FSD versions in recent memory, and I really did not have any complaints on the highway. Speed, maneuvering, lane switching, routing, and aggressiveness were all perfect.

Lane Changes

v14.2.1 had a tendency to be a little more timid when changing lanes, which was sort of frustrating at times. When the car decides to change lanes and turn on its signal, it needs to pull the trigger and change lanes.

It also changed lanes at extremely unnecessary times, which was a real frustration.

There were no issues today on v14.2.1.25; lane changes were super confident, executed at the correct time, and in the correct fashion. It made good decisions on when to get into the right lane when proceeding toward its exit.

It was one of the first times in a while that I did not feel as if I needed to nudge it to change lanes. I was very impressed.

Speed Limit Recognition

So, this is a complex issue. With v14.2.1, there were many times when it would see a Speed Limit sign that was not meant for the car (one catered for tractor trailers, for example) or even a route sign, and it would incorrectly adjust the speed. It did this on the highway several times, mistaking a Route 30 sign for a 30 MPH sign, then beginning to decelerate from 55 MPH to 30 MPH on the highway.

This required an intervention. I also had an issue leaving a drive-thru Christmas lights display, where the owners of the private property had a 15 MPH sign posted nearly every 200 yards for about a mile and a half.

The car identified it as a 55 MPH sign and sped up significantly. This caused an intervention, and I had to drive manually.

It seems like FSD v14.2.1.25 is now less reliant on the signage (maybe because it was incorrectly labeling it) and more reliant on map data or the behavior of nearby traffic.

A good example was on the highway today: despite the car reading that Route 30 sign and the Speed Limit sign on the center screen reading 30 MPH, the car did not decelerate. It continued at the same speed, but I’m not sure if that’s because of traffic or map data:

A Lone Complaint

Tesla has said future updates will include parking improvements, and I’m really anxious for them, because parking is not great. I’ve had some real issues with it over the past couple of months.

Today was no different:

Full Self-Driving v14.2.1.25 is really a massive improvement over past versions, and it seems apparent that Tesla took its time with fixing the bugs, especially with highway operation on v14.2.1.

Continue Reading