Connect with us
Tesla Cybertruck futuristic aero wheel makes debut in Los Angeles unveiling event on Nov. 21, 2019 (Photo: Teslarati) Tesla Cybertruck futuristic aero wheel makes debut in Los Angeles unveiling event on Nov. 21, 2019 (Photo: Teslarati)

News

Tesla and other EVs are a good fit for the US Army's next-gen brigades: 3-Star General

Tesla Cybertruck futuristic aero wheel makes debut in Los Angeles unveiling event on Nov. 21, 2019 (Photo: Teslarati)

Published

on

The transition of the automotive sector to sustainable solutions will not only affect the mainstream transportation industry. As the adoption of electric cars like Teslas continue, branches of the US government such as the US Army would need to embrace electrification as well. This is something that was recently discussed by 3-Star General Eric Wesley, the director of the US Army’s Futures and Concepts Center. 

In an interview with Defense News, Wesley explained why it is pertinent for the military to explore sustainable solutions for its future fleets. The Lt. Gen. also discussed some of the inherent advantages of electric vehicles compared to machines powered by the internal combustion engine. When talking about the current state of the US Army’s sustainable transition, though, Wesley admitted that things are running behind. 

“Let’s be clear. We’re behind. We’re late to meet on this thing. If you look at all of the analysis, all of the various nations that we work with, they’re all going to electric power with their automotive fleet, and right now, although we do (science and technology), and we’ve got some research and development going on, and we can build prototypes, in terms of a transition plan, we are not there,” he said. 

The Tesla Model 3 is currently being used as a vehicle by the Taiwanese military. (Credit: Tesla Owners Taiwan/Twitter)

Wesley and his team are currently preparing a proposal for the head of Army Futures Command that addresses the topic of the US military’s efforts at electrifying its fleet. The 3-Star General noted that there are several key reasons why such an endeavor is needed. One of these is the fact that it is now undeniable that the entire automotive industry is going electric. The Army must do the same, or risk having its vehicles compromised by a potential lack of parts from the supply chain. 

Operating electric brigades presents a variety of advantages that are simply not possible with petrol-powered machines. Electric vehicles, for example, are very quiet, and they generally have low heat signatures. This makes them more difficult to detect compared to internal-combustion vehicles. But these are just the tip of the iceberg. 

Advertisement

Wesley added that electric brigades have a significant advantage in the way that they can remain deployed for extended periods for time. Since EVs can be charged from renewable sources such as the sun, they could operate independently in potentially contested environments. “We have to operate distributed, which means you have to have organic power that is readily available… Electrification allows you to have access to readily available power to distribute not only for the vehicle but for all those different systems that I have,” the Lt. Gen. said. 

The Tesla Cybertruck’s tough exoskeleton could be a perfect fit for military use. (Credit: Adam Savage’s Tested/YouTube)

Lastly, electrified army vehicles have far less parts than regular petrol-powered machines. Tesla’s electric motors only have a few dozen moving parts, for example, while a regular internal combustion engine has thousands of moving parts. Key components such as batteries are usually modular as well, which means that replacing compromised sections could be accomplished fairly easily. Several electric vehicles today share a lot of the same parts as well, fostering commonality. 

Electric vehicles have grown and evolved to the point where some EVs today are objectively better than their internal combustion counterparts, period. Battery costs are also dropping, with companies like Tesla reportedly approaching the $100 per kWh milestone. Vehicles such as the Tesla Cybertruck, which could be perfect for the Army due to its durable exoskeleton and over 500-mile range, suggests that more electric innovations are in active development as well. 

Ultimately, Wesley admitted that the US Army’s transition to electric vehicles would come with a substantial price tag. That being said, he estimates that the cost to power an all-electric brigade will be lower than the cost to power the military’s existing internal combustion vehicles. 

Advertisement

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading