News
Tesla FSD Beta 10.69.2.2 extending to 160k owners in US and Canada: Elon Musk
It appears that after several iterations and adjustments, FSD Beta 10.69 is ready to roll out to the greater FSD Beta program. Elon Musk mentioned the update on Twitter, with the CEO stating that v10.69.2.2. should extend to 160,000 owners in the United States and Canada.
Similar to his other announcements about the FSD Beta program, Musk’s comments were posted on Twitter. “FSD Beta 10.69.2.1 looks good, extending to 160k owners in US & Canada,” Musk wrote before correcting himself and clarifying that he was talking about FSD Beta 10.69.2.2, not v10.69.2.1.
While Elon Musk has a known tendency to be extremely optimistic about FSD Beta-related statements, his comments about v10.69.2.2 do reflect observations from some of the program’s longtime members. Veteran FSD Beta tester @WholeMarsBlog, who does not shy away from criticizing the system if it does not work well, noted that his takeovers with v10.69.2.2 have been marginal. Fellow FSD Beta tester @GailAlfarATX reported similar observations.
Tesla definitely seems to be pushing to release FSD to its fleet. Recent comments from Tesla’s Senior Director of Investor Relations Martin Viecha during an invite-only Goldman Sachs tech conference have hinted that the electric vehicle maker is on track to release “supervised” FSD around the end of the year. That’s around the same time as Elon Musk’s estimate for FSD’s wide release.
It should be noted, of course, that even if Tesla manages to release “supervised” FSD to consumers by the end of the year, the version of the advanced driver-assist system would still require drivers to pay attention to the road and follow proper driving practices. With a feature-complete “supervised” FSD, however, Teslas would be able to navigate on their own regardless of whether they are in the highway or in inner-city streets. And that, ultimately, is a feature that will be extremely hard to beat.
Following are the release notes of FSD Beta v10.69.2.2, as retrieved by NotaTeslaApp:
– Added a new “deep lane guidance” module to the Vector Lanes neural network which fuses features extracted from the video streams with coarse map data, i.e. lane counts and lane connectivities. This architecture achieves a 44% lower error rate on lane topology compared to the previous model, enabling smoother control before lanes and their connectivities becomes visually apparent. This provides a way to make every Autopilot drive as good as someone driving their own commute, yet in a sufficiently general way that adapts for road changes.
– Improved overall driving smoothness, without sacrificing latency, through better modeling of system and actuation latency in trajectory planning. Trajectory planner now independently accounts for latency from steering commands to actual steering actuation, as well as acceleration and brake commands to actuation. This results in a trajectory that is a more accurate model of how the vehicle would drive. This allows better downstream controller tracking and smoothness while also allowing a more accurate response during harsh maneuvers.
– Improved unprotected left turns with more appropriate speed profile when approaching and exiting median crossover regions, in the presence of high speed cross traffic (“Chuck Cook style” unprotected left turns). This was done by allowing optimisable initial jerk, to mimic the harsh pedal press by a human, when required to go in front of high speed objects. Also improved lateral profile approaching such safety regions to allow for better pose that aligns well for exiting the region. Finally, improved interaction with objects that are entering or waiting inside the median crossover region with better modeling of their future intent.
– Added control for arbitrary low-speed moving volumes from Occupancy Network. This also enables finer control for more precise object shapes that cannot be easily represented by a cuboid primitive. This required predicting velocity at every 3D voxel. We may now control for slow-moving UFOs.
– Upgraded Occupancy Network to use video instead of images from single time step. This temporal context allows the network to be robust to temporary occlusions and enables prediction of occupancy flow. Also, improved ground truth with semantics-driven outlier rejection, hard example mining, and increasing the dataset size by 2.4x.
– Upgraded to a new two-stage architecture to produce object kinematics (e.g. velocity, acceleration, yaw rate) where network compute is allocated O(objects) instead of O(space). This improved velocity estimates for far away crossing vehicles by 20%, while using one tenth of the compute.
– Increased smoothness for protected right turns by improving the association of traffic lights with slip lanes vs yield signs with slip lanes. This reduces false slowdowns when there are no relevant objects present and also improves yielding position when they are present.
– Reduced false slowdowns near crosswalks. This was done with improved understanding of pedestrian and bicyclist intent based on their motion.
– Improved geometry error of ego-relevant lanes by 34% and crossing lanes by 21% with a full Vector Lanes neural network update. Information bottlenecks in the network architecture were eliminated by increasing the size of the per-camera feature extractors, video modules, internals of the autoregressive decoder, and by adding a hard attention mechanism which greatly improved the fine position of lanes.
– Made speed profile more comfortable when creeping for visibility, to allow for smoother stops when protecting for potentially occluded objects.
– Improved recall of animals by 34% by doubling the size of the auto-labeled training set.
– Enabled creeping for visibility at any intersection where objects might cross ego’s path, regardless of presence of traffic controls.
– Improved accuracy of stopping position in critical scenarios with crossing objects, by allowing dynamic resolution in trajectory optimization to focus more on areas where finer control is essential.
– Increased recall of forking lanes by 36% by having topological tokens participate in the attention operations of the autoregressive decoder and by increasing the loss applied to fork tokens during training.
– Improved velocity error for pedestrians and bicyclists by 17%, especially when ego is making a turn, by improving the onboard trajectory estimation used as input to the neural network.
– Improved recall of object detection, eliminating 26% of missing detections for far away crossing vehicles by tuning the loss function used during training and improving label quality.
– Improved object future path prediction in scenarios with high yaw rate by incorporating yaw rate and lateral motion into the likelihood estimation. This helps with objects turning into or away from ego’s lane, especially in intersections or cut-in scenarios.
– Improved speed when entering highway by better handling of upcoming map speed changes, which increases the confidence of merging onto the highway.
– Reduced latency when starting from a stop by accounting for lead vehicle jerk.
– Enabled faster identification of red light runners by evaluating their current kinematic state against their expected braking profile.
Press the “Video Record” button on the top bar UI to share your feedback. When pressed, your vehicle’s external cameras will share a short VIN-associated Autopilot Snapshot with the Tesla engineering team to help make improvements to FSD. You will not be able to view the clip.
Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.
News
Tesla rolls out xAI’s Grok to vehicles across Europe
The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain.
Tesla is rolling out Grok to vehicles in Europe. The feature will initially launch in nine European territories.
In a post on X, the official Tesla Europe, Middle East & Africa account confirmed that Grok is coming to Teslas in Europe. The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain, and additional markets are expected to be added later.
Grok allows drivers to ask questions using real-time information and interact hands-free while driving. According to Tesla’s support documentation, Grok can also initiate navigation commands, enabling users to search for destinations, discover points of interest, and adjust routes without touching the touchscreen, as per the feature’s official webpage.
The system offers selectable personalities, ranging from “Storyteller” to “Unhinged,” and is activated either through the App Launcher or by pressing and holding the steering wheel’s microphone button.
Grok is currently available only on Model S, Model 3, Model X, Model Y, and Cybertruck vehicles equipped with an AMD infotainment processor. Vehicles must be running software version 2025.26 or later, with navigation command support requiring version 2025.44.25 or newer.
Drivers must also have Premium Connectivity or a stable Wi-Fi connection to use the feature. Tesla notes that Grok does not currently replace standard voice commands for vehicle controls such as climate or media adjustments.
The company has stated that Grok interactions are processed securely by xAI and are not linked to individual drivers or vehicles. Users do not need a Grok account or subscription to enable the feature at this time as well.
News
Tesla ends Full Self-Driving purchase option in the U.S.
In January, Musk announced that Tesla would remove the ability to purchase the suite outright for $8,000. This would give the vehicle Full Self-Driving for its entire lifespan, but Tesla intended to move away from it, for several reasons, one being that a tranche in the CEO’s pay package requires 10 million active subscriptions of FSD.
Tesla has officially ended the option to purchase the Full Self-Driving suite outright, a move that was announced for the United States market in January by CEO Elon Musk.
The driver assistance suite is now exclusively available in the U.S. as a subscription, which is currently priced at $99 per month.
Tesla moved away from the outright purchase option in an effort to move more people to the subscription program, but there are concerns over its current price and the potential for it to rise.
In January, Musk announced that Tesla would remove the ability to purchase the suite outright for $8,000. This would give the vehicle Full Self-Driving for its entire lifespan, but Tesla intended to move away from it, for several reasons, one being that a tranche in the CEO’s pay package requires 10 million active subscriptions of FSD.
Although Tesla moved back the deadline in other countries, it has now taken effect in the U.S. on Sunday morning. Tesla updated its website to reflect this:
🚨 Tesla has officially moved the outright purchase option for FSD on its website pic.twitter.com/RZt1oIevB3
— TESLARATI (@Teslarati) February 15, 2026
There are still some concerns regarding its price, as $99 per month is not where many consumers are hoping to see the subscription price stay.
Musk has said that as capabilities improve, the price will go up, but it seems unlikely that 10 million drivers will want to pay an extra $100 every month for the capability, even if it is extremely useful.
Instead, many owners and fans of the company are calling for Tesla to offer a different type of pricing platform. This includes a tiered-system that would let owners pick and choose the features they would want for varying prices, or even a daily, weekly, monthly, and annual pricing option, which would incentivize longer-term purchasing.
Although Musk and other Tesla are aware of FSD’s capabilities and state is is worth much more than its current price, there could be some merit in the idea of offering a price for Supervised FSD and another price for Unsupervised FSD when it becomes available.
Elon Musk
Musk bankers looking to trim xAI debt after SpaceX merger: report
xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. A new financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year.
Elon Musk’s bankers are looking to trim the debt that xAI has taken on over the past few years, following the company’s merger with SpaceX, a new report from Bloomberg says.
xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. Bankers are trying to create some kind of financing plan that would trim “some of the heavy interest costs” that come with the debt.
The financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year. Musk has essentially confirmed that SpaceX would be heading toward an IPO last month.
The report indicates that Morgan Stanley is expected to take the leading role in any financing plan, citing people familiar with the matter. Morgan Stanley, along with Goldman Sachs, Bank of America, and JPMorgan Chase & Co., are all expected to be in the lineup of banks leading SpaceX’s potential IPO.
Since Musk acquired X, he has also had what Bloomberg says is a “mixed track record with debt markets.” Since purchasing X a few years ago with a $12.5 billion financing package, X pays “tens of millions in interest payments every month.”
That debt is held by Bank of America, Barclays, Mitsubishi, UFJ Financial, BNP Paribas SA, Mizuho, and Société Générale SA.
X merged with xAI last March, which brought the valuation to $45 billion, including the debt.
SpaceX announced the merger with xAI earlier this month, a major move in Musk’s plan to alleviate Earth of necessary data centers and replace them with orbital options that will be lower cost:
“In the long term, space-based AI is obviously the only way to scale. To harness even a millionth of our Sun’s energy would require over a million times more energy than our civilization currently uses! The only logical solution, therefore, is to transport these resource-intensive efforts to a location with vast power and space. I mean, space is called “space” for a reason.”
The merger has many advantages, but one of the most crucial is that it positions the now-merged companies to fund broader goals, fueled by revenue from the Starlink expansion, potential IPO, and AI-driven applications that could accelerate the development of lunar bases.