News
Lithium mine near Tesla Gigafactory plans to break ground as global shortage rears head
Just 150 miles north of Tesla’s Gigafactory, a plan is brewing to a build a massive mine capable of growing the world’s lithium carbonate supply by a full 15% as early as 2022 and more than 20% by 2026, compared to 2018. Tesla could, in other words, find itself neighbors with one of the largest concentrated supplies of lithium carbonate in the world less than a decade from now.
Known as Lithium Americas, the company behind the study has conservatively estimated that it could break ground on its prospective Northern Nevada Li2CO3 mine as early as the end of 2020 and ramp up to an annual output of 30,000 metric tons of the basic Li-ion battery precursor just 21 months after that. The mine’s output would then double by 2026, coming to rest at a maximum annual lithium carbonate output of 60,000 tons.
Theoretical estimates conducted by a number of academic parties in the 2010s have shown that any given high-quality lithium-ion battery would be expected to require 2-3 kilograms of lithium carbonate per kWh of final capacity, although the absolute physical minimum is closer to 0.4 kg. To sustain Gigafactory 1’s 35 GWh 2018 production goal, that single factory alone could require between 60,000 and 85,000 tons of lithium carbonate annually to sustain its battery production operations alone.
- The Model 3 assembly line inside the Sprung Structure in Tesla’s Fremont factory. [Credit: The New York Times]
- Building giant factories like Gigafactory 2 demands major capital investments that often require private equity sales. (Tesla)
To put this requirement in context, the entire global supply of lithium carbonate is expected to peak at ~250,000 tons in 2018 after astounding YoY production growth of 21.5% from 2016 to 2017 – Tesla’s demands this year could thus easily swallow 25-30% of the entire global lithium carbonate supply.
Despite those staggering numbers, Gigafactory 1 production is still expected to ramp (albeit based on optimistic 2016 Elon Musk numbers) as high as 105 GWh of cells and 150 GWh of packs annually by the time it is fully completed, likely a few years after the original 2020 estimate. Roughly 7 times the volume of Tesla’s 2018 production goals for the massive factory, sustaining that final volume of production (255 GWh annually) would literally require the global supply of lithium carbonate to grow by a bare minimum of 250% in less than half a decade. To reiterate, that is for a single Gigafactory, of which Tesla plans to construct several more in China, Europe, and elsewhere.
- A peek inside a segment of a Tesla Model 3 battery pack.
- Gayle King tours the Tesla Model 3 production line with CEO Elon Musk at the Fremont factory [Source: CBS This Morning]
Put simply, Tesla is going to need every ounce of lithium supply they can get their hands on, and Lithium Americas’ prospective Nevada offering could theoretically supplement that total required supply by as much as 10% by the mid-2020s. Tesla, however, is already hard at work attempting to secure a strong and satisfactory supply of lithium and other rare earth metals and materials required to produce premium-grade Li-on batteries.
Tesla already has agreements to buy lithium from a somewhat smaller Nevadan effort from Pure Energy Minerals (phase 1 production NET 2020) and Bacanora’s Sonora Lithium prospect (NET 2020), lithium hydroxide (a product of lithium carbonate) from Australian upstart Kidman Resources (NET 2021), and also plans to invest directly in lithium heavyweight SQM to strengthen a foothold in Chile, the current owner of ~50% of the world’s lithium mining rights.
Elon Musk
Tesla owners surpass 8 billion miles driven on FSD Supervised
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account.
Tesla shared the milestone as adoption of the system accelerates across several markets.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.



