Connect with us

News

Tesla’s ‘rotor geometry’ patent hints at more efficient electric motors

Published

on

Tesla has invented a technique for increasing its all-electric vehicles’ power and torque by simply adjusting the shape of some of its electric motor’s components.

A recently published US patent application titled “Geometry of Rotor End Ring and Stator End Turns” describes how Tesla accomplishes this. According to the application, certain internal parts of an electric motor can be modified to reduce power losses from leaks in the magnetic field that effectively make the motor smaller.

The primary components of electric motors – the rotor and the stator – together generate the motion used to operate a vehicle. Simply, a magnetic field produced by electricity running through copper wires in the stator cause the magnetized bars of the rotor to spin. However, when the motor is operating at high speed, some of the electromagnetic force is lost, reducing the motor’s power.

Figure 2 from Tesla’s U.S. Patent Application No. 2019/0097508 | Credit: Tesla

Tesla has identified two places where this loss can be reduced – the end parts of the stator and rotor. The copper wiring in these parts is wrapped around cutout shapes, and after some testing, Tesla’s engineers learned that different shapes give different results. Per the application, “geometries for rotor end ring and stator end turns can be chosen in a way that improves performance or other characteristics of the motor.”

Overall, electric current flow becomes concentrated in different spots on the motor depending on the ‘geometry’ of these parts, thus an opportunity to limit any losses has presented itself by controlling where the concentrations happen. Tesla has filed this application to protect the process (‘method’) of building a motor with the geometry knowledge made part of the design and testing.

The process is described in the application’s Abstract as follows:

Advertisement

“A method of making an AC induction motor includes: providing a rotor and a stator for the AC induction motor; determining, for different geometries of an end ring of the rotor, a location of a first centroid of current density in the end ring; determining, for end turns of the stator, a location of a second centroid of current density in the end turns; selecting a geometry for at least the endring of the rotor so that an axial distance between the first centroid of current density and the second centroid of current density is minimized; and assembling the AC induction motor, wherein the end turns and the end ring have the selected geometries.”

Figure 3 from Tesla’s U.S. Patent Application No. 2019/0097508 | Credit: Tesla

Although the publication was only recently available to the public, this application is related to another patent that was filed in 2015, meaning that Tesla is likely already implementing the findings and invention into their manufacturing process. This is rather unsurprising considering the company’s tendency to constantly improve its vehicles’ components as soon as the upgrades are available. Elon Musk himself has mentioned this on Twitter, stating that Tesla’s electric cars are “partially upgraded every month as soon as a new subsystem is ready for production.” This was also highlighted by President of Automotive Jerome Guillen last December, when he highlighted that the designs of Tesla’s batteries are always evolving.

Automotive teardown expert Sandy Munro concluded following a thorough analysis of an early-production Model 3 that the vehicle’s electric motors are among the best in the industry today. In an appearance at YouTube’s Autoline TV, Munro noted that the Model 3’s electric motors are more efficient and more cost-effective than the motors found in the Chevy Bolt EV and the BMW i3. “They’ve got magic. The electric motor is smaller and lighter than everybody else, but outperforms everybody,” Munro said.

The full text of Tesla’s “Geometry of Rotor End Ring and Stator End Turns” patent can be accessed here.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Tesla Model 3 gets perfect 5-star Euro NCAP safety rating

Tesla prides itself on producing some of the safest vehicles on the road today.

Published

on

Credit: Tesla Singapore/X

Tesla prides itself on producing some of the safest vehicles on the road today. Based on recent findings from the Euro NCAP, the 2025 Model 3 sedan continues this tradition, with the vehicle earning a 5-star overall safety rating from the agency.

Standout Safety Features

As could be seen on the Euro NCAP’s official website, the 2025 Model 3 achieved an overall score of 90% for Adult Occupants, 93% for Child Occupants, 89% for Vulnerable Road Users, and 87% for Safety Assist. This rating, as per the Euro NCAP, applies to the Model 3 Rear Wheel Drive, Long Range Rear Wheel Drive, Long Range All Wheel Drive, and Performance All Wheel Drive.

The Euro NCAP highlighted a number of the Model 3’s safety features, such as its Active Hood, which automatically lifts during collisions to mitigate injury risks to vulnerable road users, and Automatic Emergency Braking System, which now detects motorcycles through an upgraded algorithm. The Euro NCAP also mentioned the Model 3’s feature that prevents initial door opening if someone is approaching the vehicle’s blind spot.

Standout Safety Features

In a post on its official Tesla Europe & Middle East account, Tesla noted that the company is also introducing new features that make the Model 3 even safer than it is today. These include functions like head-on collision avoidance and crossing traffic AEB, as well as Child Left Alone Detection, among other safety features.

“We also introduced new features to improve Safety Assist functionality even further – like head-on collision avoidance & crossing traffic AEB – to detect & respond to potential hazards faster, helping avoid accidents in the first place. 

Advertisement

“Lastly, we released Child Left Alone Detection – if an unattended child is detected, the vehicle will turn on HVAC & alert caregivers via phone app & the vehicle itself (flashing lights/audible alert). Because we’re using novel in-cabin radar sensing, your Tesla is able to distinguish between adult vs child – reduced annoyance to adults, yet critical safety feature for kids,” Tesla wrote in its post on X.

Below is the Euro NCAP’s safety report on the 2025 Tesla Model 3 sedan.

Euroncap 2025 Tesla Model 3 Datasheet by Simon Alvarez on Scribd

Continue Reading

Elon Musk

USDOT Secretary visits Tesla Giga Texas, hints at national autonomous vehicle standards

The Transportation Secretary also toured the factory’s production lines and spoke with CEO Elon Musk.

Published

on

Credit: Elon Musk/X

United States Department of Transportation (USDOT) Secretary Sean Duffy recently visited Tesla’s Gigafactory Texas complex, where he toured the factory’s production lines and spoke with CEO Elon Musk. In a video posted following his Giga Texas visit, Duffy noted that he believes there should be a national standard for autonomous vehicles in the United States.

Duffy’s Giga Texas Visit

As could be seen in videos of his Giga Texas visit, the Transportation Secretary seemed to appreciate the work Tesla has been doing to put the United States in the forefront of innovation. “Tesla is one of the many companies helping our country reach new heights. USDOT will be right there all the way to make sure Americans stay safe,” Duffy wrote in a post on X. 

He also praised Tesla for its autonomous vehicle program, highlighting that “We need American companies to keep innovating so we can outcompete the rest of the world.”

National Standard

While speaking with Tesla CEO Elon Musk, the Transportation Secretary stated that other autonomous ride-hailing companies have been lobbying for a national standard for self-driving cars. Musk shared the sentiment, stating that “It’d be wonderful for the United States to have a national set of rules for autonomous driving as opposed to 50 independent sets of rules on a state-by-state rules basis.”

Duffy agreed with the CEO’s point, stating that, “You can’t have 50 different rules for 50 different states. You need one standard.” He also noted that the Transportation Department has asked autonomous vehicle companies to submit data. By doing so, the USDOT could develop a standard for the entire United States, allowing self-driving cars to operate in a manner that is natural and safe.

Advertisement
Continue Reading

News

Tesla posts Optimus’ most impressive video demonstration yet

The humanoid robot was able to complete all the tasks through a single neural network.

Published

on

Credit: Tesla Optimus/X

When Elon Musk spoke with CNBC’s David Faber in an interview at Giga Texas, he reiterated the idea that Optimus will be one of Tesla’s biggest products. Seemingly to highlight the CEO’s point, the official Tesla Optimus account on social media platform X shared what could very well be the most impressive demonstration of the humanoid robot’s capabilities to date.

Optimus’ Newest Demonstration

In its recent video demonstration, the Tesla Optimus team featured the humanoid robot performing a variety of tasks. These include household chores such as throwing the trash, using a broom and a vacuum cleaner, tearing a paper towel, stirring a pot of food, opening a cabinet, and closing a curtain, among others. The video also featured Optimus picking up a Model X fore link and placing it on a dolly.

What was most notable in the Tesla Optimus team’s demonstration was the fact that the humanoid robot was able to complete all the tasks through a single neural network. The robot’s actions were also learned directly from Optimus being fed data from first-person videos of humans performing similar tasks. This system should pave the way for Optimus to learn and refine new skills quickly and reliably.

Tesla VP for Optimus Shares Insight

In a follow-up post on X, Tesla Vice President of Optimus (Tesla Bot) Milan Kovac stated that one of the team’s goals is to have Optimus learn straight from internet videos of humans performing tasks, including footage captured in third person or by random cameras.

“We recently had a significant breakthrough along that journey, and can now transfer a big chunk of the learning directly from human videos to the bots (1st person views for now). This allows us to bootstrap new tasks much faster compared to teleoperated bot data alone (heavier operationally).

Advertisement

“Many new skills are emerging through this process, are called for via natural language (voice/text), and are run by a single neural network on the bot (multi-tasking). Next: expand to 3rd person video transfer (aka random internet), and push reliability via self-play (RL) in the real-, and/or synthetic- (sim / world models) world,” Kovac wrote in his post on X.

Continue Reading

Trending