Connect with us

News

Tesla Smart Summon patent highlights progress in 3D labeling for full self-driving features

Tesla Smart Summon in action. (Credit: Rody Davis/YouTube)

Published

on

A recently published Tesla patent application details the machine learning methods behind Smart Summon, specifically highlighting the progress being made with 3D labeling in training data.

The application, titled “Autonomous and User Controlled Vehicle Summon to a Target,” utilizes machine learning methods explicitly detailed in two other recent Tesla patent publications in its functionality. This series of three inventions altogether describes an automated way of generating training data which is then used by a machine learning model to accomplish an expansive list of self-driving capabilities in Summon.

“Traditionally, much of the effort to curate a training data set is done manually by reviewing potential training data and properly labeling the features associated with the data,” Tesla’s first application in the series states. “The effort required to create a training set with accurate labels can be significant and is often tedious… Therefore, there exists a need to improve the process for generating training data with accurate labeled features.”

The application goes on to describe how labeled training data is made autonomously in their invention using sensors and the collection of what’s called a “time series,” i.e., a series of images captured over a period of time.

“Using data captured by sensors on a vehicle to capture the environment of the vehicle and vehicle operating parameters, a training data set is created,” it explains. “In some embodiments, a three-dimensional representation of a feature, such as a lane line, is created from the group of time series elements that corresponds to the ground truth… As one example, a series of images for a time period, such as 30 seconds, is used to determine the actual path of a vehicle lane line over the time period the vehicle travels…a single image of the group and the actual path taken can be used as training data to predict the path of the vehicle.”

Advertisement
-->

Tesla CEO Elon Musk has previously mentioned that better labeling is one of the keys to speeding up the rollout of self-driving functionality and features like Reverse Summon. “We need to finish work on Autopilot core foundation code & 3D labeling, then functionality will happen quickly. Not long now,” Musk wrote on Twitter in March this year. With better labeling (more accurate training data) comes safer and more capable software due to improved predictions from the modeling.

Tesla Owners Silicon Valley Smart Summon Model 3s (Credit: @MinimalDuck)

When it comes to Tesla’s Smart Summon, prediction modeling is essential considering there isn’t a driver in the vehicle during its operation. The patent publication covering Summon embodies the first application’s time series functionality and a second application’s implementation of the time series’ training data in its methods, demonstrating one of the numerous potential uses for the machine learning invention. Hints about future developments using Smart Summon are also detailed in the application. Examples include:

  • Syncing the Smart Summon with a calendar so the vehicle “automatically navigates to arrive at the location at the ending time, such as the end of a dinner party, a wedding, a restaurant reservation, etc.”
  • Implementing a multi-part destination into the Summon instructions such as waypoints at an airport to pick up multiple passengers.
  • Monitoring the heartbeat of a Summon user to ensure they are maintaining a connection with the vehicle while operating the feature.
  • Customizing the vehicle’s arrival settings such as interior lighting, exterior lighting, hazard lights, welcome music, and climate control preferences.

One of the more unique bits about the Smart Summon patent application is the appearance of Elon Musk as an inventor. While the CEO is known to be intimately involved in nearly all aspects of vehicle design, software features, and business operations, his name is unexpectedly absent from most of the company’s inventions. However, this is apparently on purpose. “I generally try my best not to be on patents,” he revealed on Twitter in reply to a post about the Smart Summon application. Notably, inventorship is a legal definition based on the conception of an invention, i.e., not the person/people who suggested or directed its creation, but the person/people who devised the means to accomplish it.

Prior to the most recent patent publication, Musk contributed inventorship to the door and body styling of the Model X. He also contributed the same to both the design and function of Tesla’s vehicle charge inlets.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading