Connect with us

News

Virtual reality haptic “smart suit” uses AI with biometrics to simulate real-world environments

Published

on

One of the innovative future technologies that was on display at this year’s Consumer Electronics Show (CES 2019) in Las Vegas is the Teslasuit, a full body virtual reality haptic suit that delivers real sensations to users that mimic the environment of a digital simulation or game. In a haptic feedback system, stimuli are used to provoke real sensations involving touch – shocks, punches, pushes, bumps, etc. Teslasuit combines this sort of environmental feedback along with climate control, motion capture, and biometric systems to give a fully responsive, immersive experience to the user. Combined with true-to-life virtual reality graphics, this device could finally provide the experience VR was intended to have since its development began.

The full-body sensations of the Teslasuit seem to indicate a new level of experience for virtual reality users, but the haptic capabilities aren’t the only things making it stand out. The suit’s biometric system is designed to use machine learning to analyze heart rate, stress levels, and overall mental and emotional states to create experiences catered to the user. How this capability will be implemented is really up to game developers, though. As data is gathered from biometrics, capabilities will follow. “This is very important for the gaming industry. We see that in the future, when we come to the end user market, that we will be able to offer a lot of data sensing for the developers to process, for the AI itself to adjust the game to the player,” Dimitri Mikhalchuk, co-founder of Teslasuit, explained in an interview with Digital Trends. The suit was first officially unveiled at CES 2018.

Teslasuit uses 68 channels embedded throughout the suit’s fabric to deliver electrical stimulations, and the company is working to expand on that number. Also included in the suit’s software is a haptic library, enabling game developers to create their own effects to correspond with their virtual worlds. The climate control system adjusts the temperature of the suit, heating and cooling in accordance with the virtual environment. Finally, its motion capture and avatar system track motions from the users entire body to interact with virtual environments (and built with multiple players in mind), something that’s more or less an expansion on the core of VR to begin with.

While the Teslasuit brings virtual worlds closer to a potentially action-packed reality, bruises are not part of the experience, according to Mikhalchuk. The electric stimulation is matched to the users own strength, adapting its responses to the input. In other words, the force a user “hits” with in a game is the amount of force used to “hit” back, i.e., electric pulses make the muscles contract within that range.

Advertisement

With the equivalent of a full body shocking device wrapped around players, the question of security arises, yet another thing Teslasuit has addressed in its design. Its software has military grade encryption (AES 256) built into its wireless control system to ensure users’ bodies are not (literally) hacked into. Among its many features, Teslasuit is also completely wireless, boasts a 10+ hour battery life, and is machine washable (important for sweat-inducing virtual scenarios and general funk from frequent wear). A summary of the device on the Teslasuit website reads like something from a science fiction movie:

A highly developed form of computer modeling allows an operator to immerse in the artificial world. The user can act directly in it with the help of special sensory devices that link movements with audio-visual effects. In this case, the user’s visual, auditory, tactile, and motor sensations are replaced by their imitation, generated by a computer system with full body haptic VR suit. At the same time, biometric system of the Teslasuit analyzes human performance and health (workforce and human performance analytics). – Teslasuit.io

The future of augmented reality and virtual reality applications have been explored in fictional storylines over the years with the most recent and directly relevant one being the haptic system imagined in the movie Ready Player One. The Battlestar Galactica prequel series “Caprica” also imagined an immersive virtual world that users could “feel” experiences in (or otherwise do things they wouldn’t/couldn’t in the real world), but that didn’t require a suit, just a mind. In an episode of Netflix’s Black Mirror series called “Playtest”, an American traveler in the UK signs up to demo an immersive VR horror game to earn some money. Unlike the Teslasuit, however, the experience in that episode involved an implant to the user’s neck called a “mushroom” which linked up the VR experience with a user’s brain. The Matrix also suggested an immersive environment, although people weren’t exactly voluntarily involved, if they ever knew it wasn’t real to begin with.

Other than gaming, Teslasuit is suggestive of several solutions for non-entertainment industries. According to an article on their company website, several VR-training solutions were available for demonstration at CES 2019: Astronaut VR-training in an ISS module, an oil-loading ramp operation VR-simulator, emergency evacuation VR-training, and a powerplant VR training simulator. Teslasuit is currently continuing its outreach and collaboration with game companies to develop content. Its software development kit and corresponding system tools and applications are included with the purchase of the suit which began shipping B2B in the third quarter of 2018.

Watch the below video for a first-hand review of Teslasuit:

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Advertisement

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Advertisement
Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Advertisement

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

Advertisement

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Advertisement

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Advertisement

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

Advertisement

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Advertisement
Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

Advertisement

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Advertisement
Continue Reading