Connect with us

News

Engineers develop bio-machine nose that can “sniff” and classify odors

Published

on

Engineers from Brown University in Rhode Island have invented a small, low-cost sensor device which is able to classify odors using input from a mimicked “sniffing” action. It’s called TruffleBot, and it’s here to raise the bar on electronic “noses”. It also works with Raspberry Pi, an inexpensive mini-computer popular with electronics hobbyists, students, and others in the “maker” crowd.

Generally, an electronic nose is a device comprising several chemical sensors whose results are fed through a pattern-recognition system to identify odors. In traditional devices, the chemical responses alone are used for classification. The engineers behind this invention, however, decided to incorporate non-chemical data to account for the mechanics of the smell process used in nature for a better result. Their experiment proved successful with an approximate 95-98% rate of accuracy in identification compared to about 80-90% accuracy with the chemical sensors alone.

According to the inventors’ published paper, the guiding knowledge that made TruffleBot so useful in odor detection was this: Different smells have different impacts on the air around them, and measuring the variations enables more accurate identification. Did you know that beer odor decreases air pressure and increases temperature? The changes are slight, but TruffleBot can sense them.

This is where the “sniffing” comes in. The device uses air pumped through four obstructed pathways before sending it through chemical and non-chemical sensors. Odors impact the air surrounding them, and the movement of the air through obstacles (“sniffing”) enables the odors’ impact to be more accurately measured.

A chart detailing how TruffleBot processes odors. | Credit: Brown University

So, where exactly would one need an electronic nose? Everywhere. Devices with the chemical sensing ability are being used in agriculture, military, and commercial applications to identify all sorts environmental data. Essentially, electronic noses are useful in any industrial application that has odor involved.

Nasal Marketing

Did you know that it’s possible to trademark a smell in the United States? It’s not easy to accomplish given the somewhat difficult requirements to meet, but a few such things exist. The fact that Play-Doh, a product whose smell is probably one of its most distinct features, was granted a trademark for the scent only this year is testament to the difficulty of obtaining such a mark. However, the fact that some companies have found enough incentive to make sure only their company can give your nose a particular chemical experience tells a lot about that sense’s importance from a marketing perspective.

Advertisement
-->

On one hand, utilizing smell in marketing might seem a little manipulative. After all, creating an air freshener that reminds someone of a beloved, deceased relative on purpose might not seem like a particularly ethical way to target their money. On the other hand (or bigger picture), however, the motivation for marketers to use scent as a tool involves a sort of “chicken or the egg” question.

To summarize part of an article in the journal Sensors on the role scent plays in society and commerce, the aroma of products has a direct impact on their appeal to customers and thus, the success of the product. In fact, a change in a product’s formula that impacts its smell can, and often has had, devastating sales results. In other words, it’s not enough for a company to create a good product; it has to be a good smelling product.

Hacking the Human Nose

It’s probably no surprise that the commercial industry has categorized consumer preferences when it comes to smells. As the first sense fully developed after birth, our noses link us to things like memories, emotions, and chemical communication (think pheromones). Is it any wonder, then, why businesses might be interested in the functionality of the organ that is doing the receiving?

Turns out, there’s an enormous amount of science behind “hacking” a nose. Identifying smells is more than just categorizing chemical mixtures as “floral” or “masculine”. The multitude of chemical combinations available generates such a vast amount of data that scientists have implemented computer neural networks to analyze and classify it. Also, the actual mechanics of smelling something impacts the way the smell is received and processed in the brain. Computers and scientific instruments come in handy there as well. To really get to the core of human response to an aroma, lots of non-human tools are needed, and this is essentially where the TruffleBot fits in the greater realm of “olfactory” science.

I think this is a Sumerian variant for “fruity”. | Credit: AstroJane’s bathroom collection.

More Than Just Your Money

Perhaps one of the most innovative uses found for electronic noses is in disease research. One of the limitations of human smell is its overall weakness. A dog’s sense of smell is around 40 times better than a human’s, and a bear’s is a whopping 2,100 times superior to ours. That said, when researchers learned that certain diseases give off certain odors, the human nose wasn’t exactly the first choice to utilize in sensing them.

An electronic nose makes good use of the simple fact that organic matter releases chemicals into the air. For example, when a plant has been impacted by a fungus, the changes brought on in the plant’s structure release what’s called “volatile organic compounds” (VOCs). These VOCs can be detected by the sensors in an electronic nose and then provide information on the type of disease present without destroying the plants being tested.

Advertisement
-->

Humans have some amazing things to gain from electronic noses, too. Using sensors to process odors from VOCs, things like digestive diseases, kidney diseases, and diabetes, among many others,  are all receiving scientific attention for non-invasive diagnosis by these types of devices. With improvements brought on by inventions like TruffleBot, especially combined with its low-cost and resulting accessibility, a future involving remote diagnoses for any number of illnesses and diseases seems more possible every day.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Man credits Grok AI with saving his life after ER missed near-ruptured appendix

The AI flagged some of the man’s symptoms and urged him to return to the ER immediately and demand a CT scan.

Published

on

Credit: Grok Imagine

A 49-year-old man has stated that xAI’s Grok ended up saving his life when the large language model identified a near-ruptured appendix that his first ER visit dismissed as acid reflux. 

After being sent home from the ER, the man asked Grok to analyze his symptoms. The AI flagged some of the man’s symptoms and urged him to return immediately and demand a CT scan. The scan confirmed that something far worse than acid reflux was indeed going on.

Grok spotted what a doctor missed

In a post on Reddit, u/Tykjen noted that for 24 hours straight, he had a constant “razor-blade-level” abdominal pain that forced him into a fetal position. He had no fever or visible signs. He went to the ER, where a doctor pressed his soft belly, prescribed acid blockers, and sent him home. 

The acid blockers didn’t work, and the man’s pain remained intense. He then decided to open a year-long chat he had with Grok and listed every detail that he was experiencing. The AI responded quickly. “Grok immediately flagged perforated ulcer or atypical appendicitis, told me the exact red-flag pattern I was describing, and basically said “go back right now and ask for a CT,” the man wrote in his post. 

He copied Grok’s reasoning, returned to the ER, and insisted on the scan. The CT scan ultimately showed an inflamed appendix on the verge of rupture. Six hours later, the appendix was out. The man said the pain has completely vanished, and he woke up laughing under anesthesia. He was discharged the next day.

Advertisement
-->
How a late-night conversation with Grok got me to demand the CT scan that saved my life from a ruptured appendix (December 2025)
byu/Tykjen ingrok

AI doctors could very well be welcomed

In the replies to his Reddit post, u/Tykjen further explained that he specifically avoided telling doctors that Grok, an AI, suggested he get a CT scan. “I did not tell them on the second visit that Grok recommended the CT scan. I had to lie. I told them my sister who’s a nurse told me to ask for the scan,” the man wrote. 

One commenter noted that the use of AI in medicine will likely be welcomed, stating that “If AI could take doctors’ jobs one day, I will be happy. Doctors just don’t care anymore. It’s all a paycheck.” The Redditor replied with, “Sadly yes. That is what it felt like after the first visit. And the following night could have been my last.”

Elon Musk has been very optimistic about the potential of robots like Tesla Optimus in the medical field. Provided that they are able to achieve human-level articulation in their hands, and Tesla is able to bring down their cost through mass manufacturing, the era of AI-powered medical care could very well be closer than expected. 

Continue Reading

News

Tesla expands Model 3 lineup in Europe with most affordable variant yet

The Model 3 Standard still delivers more than 300 miles of range, potentially making it an attractive option for budget-conscious buyers.

Published

on

Credit: Tesla

Tesla has introduced a lower-priced Model 3 variant in Europe, expanding the lineup just two months after the vehicle’s U.S. debut. The Model 3 Standard still delivers more than 300 miles (480 km) of range, potentially making it an attractive option for budget-conscious buyers.

Tesla’s pricing strategy

The Model 3 Standard arrives as Tesla contends with declining registrations in several countries across Europe, where sales have not fully offset shifting consumer preferences. Many buyers have turned to options such as Volkswagen’s ID.3 and BYD’s Atto 3, both of which have benefited from aggressive pricing.

By removing select premium finishes and features, Tesla positioned the new Model 3 Standard as an “ultra-low cost of ownership” option of its all-electric sedan. Pricing comes in at €37,970 in Germany, NOK 330,056 in Norway, and SEK 449,990 in Sweden, depending on market. This places the Model 3 Standard well below the “premium” Model 3 trim, which starts at €45,970 in Germany. 

Deliveries for the Standard model are expected to begin in the first quarter of 2026, giving Tesla an entry-level foothold in a segment that’s increasingly defined by sub-€40,000 offerings.

Tesla’s affordable vehicle push

The low-cost Model 3 follows October’s launch of a similarly positioned Model Y variant, signaling a broader shift in Tesla’s product strategy. While CEO Elon Musk has moved the company toward AI-driven initiatives such as robotaxis and humanoid robots, lower-priced vehicles remain necessary to support the company’s revenue in the near term.

Advertisement
-->

Reports have indicated that Tesla previously abandoned plans for an all-new $25,000 EV, with the company opting to create cheaper versions of existing platforms instead. Analysts have flagged possible cannibalization of higher-margin models, but the move aims to counter an influx of aggressively priced entrants from China and Europe, many of which sell below $30,000. With the new Model 3 Standard, Tesla is reinforcing its volume strategy in Europe’s increasingly competitive EV landscape.

Continue Reading

News

Tesla FSD (Supervised) stuns Germany’s biggest car magazine

FSD Supervised recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.

Published

on

Credit: Grok Imagine

Tesla’s upcoming FSD Supervised system, set for a European debut pending regulatory approval, is showing notably refined behavior in real-world testing, including construction zones, pedestrian detection, and lane changes, as per a recent demonstration ride in Berlin. 

While the system still required driver oversight, its smooth braking, steering, and decision-making illustrated how far Tesla’s driver-assistance technology has advanced ahead of a potential 2026 rollout.

FSD’s maturity in dense city driving

During the Berlin test ride with Auto Bild, Germany’s largest automotive publication, a Tesla Model 3 running FSD handled complex traffic with minimal intervention, autonomously managing braking, acceleration, steering, and overtaking up to 140 km/h. It recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets. 

Only one manual override was required when the system misread a converted one-way route, an example, Tesla stated, of the continuous learning baked into its vision-based architecture.

Robin Hornig of Auto Bild summed up his experience with FSD Supervised with a glowing review of the system. As per the reporter, FSD Supervised already exceeds humans with its all-around vision. “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention,” the journalist wrote. 

Advertisement
-->
https://twitter.com/Paddy_film/status/1996245521770364947?s=20

Tesla FSD in Europe

FSD Supervised is still a driver-assistance system rather than autonomous driving. Still, Auto Bild noted that Tesla’s 360-degree camera suite, constant monitoring, and high computing power mark a sizable leap from earlier iterations. Already active in the U.S., China, and several other regions, the system is currently navigating Europe’s approval pipeline. Tesla has applied for an exemption in the Netherlands, aiming to launch the feature through a free software update as early as February 2026.

What Tesla demonstrated in Berlin mirrors capabilities already common in China and the U.S., where rival automakers have rolled out hands-free or city-navigation systems. Europe, however, remains behind due to a stricter certification environment, though Tesla is currently hard at work pushing for FSD Supervised’s approval in several countries in the region.

Continue Reading