Connect with us

News

US Government Seizes Fisker’s Cash Reserve

Published

on

 Weak Fisker: On April 11 the federal government seized $21 million from the company’s cash reserves. Image: Flickr/Fisker Auto

U.S. electric car pioneer Fisker Automotive once posted a manifesto on its Web site: “New isn’t easy.” Not for them, it wasn’t. Now their site is defunct and the company is scrambling to find a funder or face bankruptcy.

An electric car company buoyed by federal dollars in 2010, Fisker has now been crippled by supply chain and other problems, and joined legions of start-ups that get dragged down by technical glitches and financial woes. The capital backing from taxpayers caused a dustup that has kept Fisker in the limelight.

The greater question now is whether Fisker’s crash will have repercussions for the electric vehicle industry, which has seen some sales successes with Tesla’s Model S in recent months but largely remains unrealized.

Rewind to just a few years ago when the future for electric vehicles looked promising. In 2010 the Nissan Leaf and Chevrolet Volt hit the road. Gas prices were rising and Pres. Barack Obama pledged to put one million electric vehicles on the road by 2015. With climate change legislation on the table in Congress as well, the EV market seemed primed for an upswing.

Enter Fisker, whose electric sports sedan Karma rolled into showrooms in 2011 amid fanfareTIME listed it as one of the 50 best inventions of 2011. The Anaheim, Calif.–based company netted a $529 million government-backed loan to help fuel its efforts. In recent years it reportedly raised $1 billion more in private funds.

Advertisement
-->

But things started to fall apart. Its lone battery supplier, A123 Systems, floundered and eventually went bankrupt—a significant blow when as much as half of electric cars’ price tag comes from that piece of technology. Karma had to halt production. The U.S. Department of Energy (DoE) froze Fisker’s loan at $192 million in June 2011. A flawed cooling fan was also linked to a fire in 2012, prompting recalls.  In October Hurricane Sandy destroyed several hundred Karmas waiting for shipment at Port Newark, N.J. Fisker’s founder left last month, leaving the company to contemplate its next steps. This month it laid off the majority of its employees. It is also reportedly being sued by a Web designeran investor and some former employees.

And the hits keep on coming: On April 11 the federal government seized $21 million from the company’s cash reserves. Fisker did not respond to a request from Scientific American for comment on this story.

Republican lawmakers blasted the company at a House Subcommittee on Economic Growth, Job Creation and Regulatory Affairshearing on Wednesday, accusing Fisker of profiting from close connections with the Obama administration. But lawmakers saved most of their fire for the DoE, blaming it for continuing to dole out funds when some lawmakers believe there were early indications the company was not delivering on its product. “The real issue here…is the government shouldn’t be in this business of actually trying to be a venture capitalist. The government is a very poor venture capitalist,” said Rep. Patrick McHenry (R–N.C.). “We lose taxpayer dollars, and when we lose taxpayer dollars it outrages the public.” Armed with private e-mail correspondence House Republicans obtained between the company, DoE and related consultants, it tried to pin down who knew what and when.

Henrik Fisker, the company’s former chairman and founder, told House lawmakers that strategic financing at this stage could still allow the company to rebound. In any case, Fisker’s bevy of problems are unique to the company and do not reflect the electric vehicle landscape, says Alan Baum, a Michigan-based analyst specializing in the automotive industry. Start-up car companies—electric or not— often fail, he said.

The real next steps in the industry will come from the larger auto companies such as General Motors, Ford, Toyota, Nissan, Mercedes, Honda, Mitsubishi and BMW. “All those automakers I mentioned have vehicles in the pipeline that will debut in then next two or three years if they have not yet,” Baum says. “Major carmakers know with electric vehicles you can’t just sit on the sidelines.”

Advertisement
-->

Navigant Research predicted this month that a total of 21.9 million electric vehicles (both all-electric and plug-in hybrids) will be sold worldwide between 2012 and 2020Its forecasts suggest a fraction—368,000—will be sold in the U.S.; and only 107,000 would be all-electric vehicles (instead of plug-ins). That means that in seven years electric vehicles are expected to comprise only a sliver of the anticipated U.S. car market in 2020—roughly 2 percent, says Dave Hurst, a principal research analyst with Navigant. It will be an uphill climb, Navigant’s researchers expect about 71,800 electric vehicles to sell in the U.S. this year, 17,300 of which would be all-electric vehicles.

One issue is cost. Even with up to $7,500 in federal tax credits, electric vehicle prices can be steep. Without the credits, Karma’s sticker price was in the six-figures. Tesla’s top-of-the-line Model S costs $95,000. The Chevy Volt sells for about $40,000 and the Ford Fusion Energi rings in at $39,000. The price for the Nissan Leaf, which recently moved its manufacturing operations to the U.S., has dropped to around $29,000.

Finding an advanced battery that comes in the perfect package—high in energy density, small in size and lower in price—remains one of the largest hurdles to getting more electric vehicles on the road. “If we want to change things dramatically in the next 10 years we have to find a new material set—a new cathode–anode electrolyte set that will hopefully decrease the cost and increase energy density,” says Venkat Srinivasan, deputy director of the Joint Center for Energy Storage Research (JCESR). “If we can achieve that something dramatic would happen and significantly change the penetration curve.” JCESR, an “advanced battery hub,” was established in 2012 at DoE’s Argonne National Laboratory outside Chicago with the far-reaching goal of finding batteries with five times the current energy storage at one fifth the price in five years.

On the research side, federal loans from the Advanced Technology Vehicles Manufacturing Loan program (ATVM) have also supported other electric vehicle options, including Tesla, which received $465 million from DoE in 2010 and has said it expects to repay its loan five years early. Under this loan program, established under the George W. Bush administration, DoE also cut Ford a check for $5.9 billion to upgrade and modernize factories that produce vehicles including the Focus, Escape and Fusion. To Nissan, ATVM gave a loan for $1.4 billion to support the Leaf. And the Vehicle Production Group, LLC, received a $50-million loan to develop a wheelchair-accessible vehicle that will run on compressed natural gas. “To date, DoE has committed and closed five ATVM loans, totaling $8.4 billion, to auto manufacturers large and small who are adopting cutting-edge technologies and deploying them into the market,” Nicholas Whitcombe, former acting director of the ATVM program at DoE, told lawmakers Wednesday.

But the same problems continue to plague the electric vehicle industry year after year: the need for a battery that is long on power and short on cost; and a public that still feels uneasy about purchasing electric vehicles. So much of the future for electric vehicles also remains murky because it is difficult to predict gas prices. Navigant’s forecast for 2020 assumes that fuel prices continue to climb around 7 percent per year, electric vehicle costs come down and government incentives to buy electric vehicles stay in place for consumers. That’s a lot of what-ifs.

Advertisement
-->

In the coming years there may be a host of experimentation with electric vehicles—inclusive of testing different products under the hood but also different types of cars with more spacious backseats and trunk space. “Every major automaker is going to be offering one or several models, and they come in at different price points and configurations,” says Genevieve Cullen, vice president of the Electric Drive Transportation Association.

In Europe several companies have tried to lower the price of purchasing an electric vehicle by allowing consumers to buy the car but lease the battery. That has not yet caught on in the U.S. but smart USA plans to offer it to U.S customers for the first time when its smart fortwo Electric Drive is released in May. Whereas leasing batteries could lower risks and costs, consumers still might balk. “It’s like buying a car without an engine and then leasing the engine,” Navigant’s Hurst noted.

“It’s a fantastic idea in some ways,” JCESR’s Srinivasan says. “What you’re telling consumers is don’t worry about the battery and how long it will last and how much it will cost.”

Leasing batteries is just one business model approach, Cullen says. Some carmakers are also exploring how they could tap the batteries’ remaining energy once their life in the car is over, she said. “Diversity in the marketplace will be an enormous step in growing this market.”

Click here to view original web page at www.scientificamerican.com

Advertisement
-->
Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk teases insane capabilities of next major FSD update

Published

on

Credit: Tesla China/Weibo

Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.

Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.

However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”

Advertisement
-->

There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.

One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.

We experienced it most frequently at intersections, especially four-way stop signs.

Elon Musk hints at when Tesla can fix this FSD complaint with v14

In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.

Advertisement
-->

Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.

However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.

Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.

Continue Reading

News

Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad

Published

on

Credit: Teslarati

Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.

With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.

While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.

With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.

However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.

Advertisement
-->

The Good

Lack of Brake Stabbing and Hesitation

Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.

This was a major problem.

However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.

This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.

Speed Profiles Seem to Be More Reasonable

There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.

Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.

It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.

Advertisement
-->

Better Overall Operation

I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.

v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.

The Bad

Parking

It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.

This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.

However, this was truly my only complaint about v14.2.

You can check out our full 62-minute ride-along below:

Advertisement
-->
Continue Reading

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading