News
US military uses genetic engineering to develop “living tripwires” for submarines
The US Department of Defense (DoD) is investing $45 million dollars in a tri-service effort that focuses on synthetic biology (SynBio) for use in military technologies. This interdisciplinary scientific field primarily involves altering the genetic makeup of organisms to achieve specific behavior, and the military wants in on its potential applications. By uniting SynBio experts within the US Air Force, Army, and Navy, DoD officials hope to develop serious capabilities for use throughout the military’s branches.
The long form name of this project is the Applied Research for the Advancement of Science and Technology Priorities Program on Synthetic Biology for Military Environments, and the mission is obvious from its title alone. While still in the early research stages, engineering organisms could provide numerous tools with direct defense applications.
For example, organisms engineered to change their colors based on their environment could be used as living camouflage, and medications infused with protective microbes could help service member survival in tough conditions. However, it’s perhaps the US Naval Research Laboratory (NRL) in Washington DC that may hold the relevant interest in developing SynBio capabilities due to the marine environment potentials it holds.

Above the water, engineered self-repairing organisms could spell out self-healing paint for ships and aircraft carriers, cutting billions from the US Navy’s fleet maintenance costs. Even more important for defense needs, though, are the modified organisms that could help the branch’s deep water operations, i.e., submarines. By modifying the environmental response of naturally present organisms, naval defense could have a new type of radar at their disposal.
An abundant seawater-native bacteria with “clinging” properties called Marinobacter is a prime candidate for the DoD’s purposes. Specifically, the organism could be genetically engineered to react to certain types of molecules that aren’t naturally occurring in the ocean, such as diesel fuel or human DNA, and then spread into targeted environments for monitoring. This reaction could perhaps be the release of an electron, thus creating an electrical signal which nearby drones could pick up and transmit where necessary. The ability to detect non-friendly submarines is the key capability the researchers are aiming to achieve, the bacteria acting as “living tripwires.”
The field of synthetic biology is not new in the civilian world. In fact, consumer products currently exist based on it, such as bio fuels, soaps, cleaners, food additives, and a variety of industrial and manufacturing products. One of the challenges of bringing this type of technology to the field for military use is making the modified organisms tough enough to endure the environments needed.
“If you want to move a biological bio-based sensor to the field you try to ruggedize those organisms. You try to protect them…[and]…increase their longevity in these harsh environments,” explained Dimitra Stratis-Cullum, the lead of U.S. Army Research Laboratory biomaterials team, in a recent forum hosted by the Johns Hopkins University Applied Physics Laboratory.
The current genetic research being conducted in SynBio has demonstrated that the genes of E. coli bacteria can be manipulated to express properties relevant to the larger goal of underwater sensing. However, the significant differences between the E. Coli and the types of organisms natural to deep water environments, such as Marinobacter, can be compared to the differences between mice and humans.
The initial point really is to either prove that the desired outcome is possible or collect data to assist in that effort. In other words, there’s still a lot of work to be done, but making the effort a priority, such as what the Navy’s done with its “Task Force Ocean” mission aimed at strengthening partnerships within academia and the private sector regarding Navy-relevant ocean science, is a focused step in the right direction for the military to achieve its goals in SynBio.
News
Tesla confirms Full Self-Driving still isn’t garnering interest from lagging competitors
Tesla executive Sendil Palani confirmed in a post on social media platform X that Full Self-Driving, despite being the most robust driver assistance program in the United States, still isn’t garnering any interest from lagging competitors.
Tesla has said on several occasions in the past that it has had discussions with a competing carmaker to license its Full Self-Driving suite. While it never confirmed which company it was, many pointed toward Ford as the one Tesla was holding dialogue with.
At the time, Ford CEO Jim Farley and Tesla CEO Elon Musk had a very cordial relationship.
Despite Tesla’s confirmation, which occurred during both the Q2 2023 and Q1 2024 Earnings Calls, no deal was ever reached. Whichever “major OEM” Tesla had talked to did not see the benefit. Even now, Tesla has not found that dance partner, despite leading every company in the U.S. in self-driving efforts by a considerable margin.
Elon Musk says Tesla Robotaxi launch will force companies to license Full Self-Driving
Palani seemed to confirm that Tesla still has not found any company that is remotely interested in licensing FSD, as he said on X that “despite our best efforts to share the technology,” the company has found that it “has not been proven to be easy.”
Licensing FSD has not proven to be easy, despite our best efforts to share the technology. https://t.co/VGYBU7Aduw
— Sendil Palani (@sendilpalani) February 3, 2026
The question came just after one Tesla fan on X asked whether Tesla would continue manufacturing vehicles.
Because Tesla continues to expand its lineup of Model Y, it has plans to build the Cybercab, and there is still an immediate need for passenger vehicles, there is no question that the company plans to continue scaling its production.
However, Palani’s response is interesting, especially considering that it was in response to the question of whether Tesla would keep building cars.
Perhaps if Tesla could license Full Self-Driving to enough companies for the right price, it could simply sell the suite to car companies that are building vehicles, eliminating the need for Tesla to build its own.
While it seems like a reach because of Tesla’s considerable fan base, which is one of the most loyal in the automotive industry, the company could eventually bail on manufacturing and gain an incredible valuation by simply unlocking self-driving for other manufacturers.
The big question regarding why Tesla can’t find another company to license FSD is simply, “Why?”
Do they think they can solve it themselves? Do they not find FSD as valuable or effective? Many of these same companies didn’t bat an eye when Tesla started developing EVs, only to find themselves years behind. This could be a continuing trend.
News
Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee
Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.
Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.
These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.
He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.
Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.
Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.
🚨 Tesla VP of Vehicle Engineering, Lars Moravy, appeared today before the U.S. Senate Commerce Committee to discuss the importance of outlining an efficient framework for autonomous vehicles:
— TESLARATI (@Teslarati) February 4, 2026
Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”
This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.
Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.
Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.
News
Tesla Model Y lineup expansion signals an uncomfortable reality for consumers
Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.
However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.
Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.
Tesla brings closure to Model Y moniker with launch of new trim level
While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.
Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.
But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.
Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.
Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.
Minor Expansions of the Model Y Fail to Address Family Needs for Space
Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.
Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.
Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.
Model Y Expansion Doesn’t Boost Performance, Value, or Space
You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.
The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?
Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity
The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.
Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.
Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.