SpaceX
There are many challenges involved in a mission to Mars. What are they and what technology is SpaceX working on to address them?
The concept of sending humans to Mars has been an exciting idea for decades, and the direction of space travel in the 21st century is finally presenting the possibility of actually making that happen. Of course, once everyone let the seriousness of such a journey sink in, the question of feasibility has inevitably come to the table for open discussion with the goal of finding realistic solutions.
It’s interesting enough to simply review the missions of all the Mars hopefuls (Part 1), but now that the reviews are in, it’s the details that are driving the discussion. After all, even the casual observer knows that deep space travel presents challenges such as long-term zero gravity and the ever-popular doom-and-gloom danger of cosmic radiation.
[Say that last one in a loud, booming voice for extra effect.]
Before breaking down any specifics, I want to acknowledge that there’s more than just a twelve-step program to getting to Mars (twelve being the obligatory “go-to” number). It requires an entire infrastructure of capabilities that build upon and support one another. However, I’m taking a leap of faith by assuming that inevitably anyone making a successful trip to Mars will have partnerships in place to tap into such an infrastructure. It’s the larger components of the specific missions that I’m focusing on here.
Outlining the Challenges for a Mission to Mars
NASA has a dedicated “Space Technology Mission Directorate” (STMD) charged with developing the capabilities needed to achieve the missions and goals NASA is given.
With the red planet as one of the big missions of the day (meaning Mars obviously, although Pluto has also been determined to be red), there’s no shortage of PowerPoints, panels, and interviews to source for what’s being worked on. I’ll follow their lead for discussion.
Transportation
First and foremost, in order to explore Mars, we’ve got to get there and (arguably) back. Depending on the length of stay and mission purpose, the cargo needs are going to play a part in the “how” part of this puzzle piece. Small stuff, no sweat (relative to general space traveler sweat levels). Big stuff? Now we’ve got issues.
Propulsion
Propulsion has been an interesting discussion to watch from the sidelines, mainly due to the debate over the types of systems available versus the types of systems thought to be needed. General mission discussions tend towards a six to eight month flight time each way plus a year and a half or so on the surface, but there are those advocating for shorter flight times to mitigate hazard exposure and reduce cargo needs.
Current rocket fuels can speed things along, but only at the expense of high fuel consumption. Nuclear fusion (and fission) systems are in the works which would theoretically reduce the flight time to Mars to approximately three months, but the timeframe needed to fully develop and test such new technologies isn’t a big crowd pleaser.
The methane-based nature of SpaceX’s Raptor engine for their speculated Mars Colonial Transport doesn’t really lend either way to this debate because using methane is a choice surrounding resource availability rather than power levels. Since methane can be harvested and manufactured on Mars, it reduces the need to carry as much fuel from Earth on missions, thus lowering costs. Methane-based fuel generation is also one of the key parts of the Mars Society’s “Mars Direct” proposal.
Entry, Descent, and Landing
Given the fact that we’ve sent several rovers to Mars already, it might be surprising that getting a craft from orbit to the Martian surface is actually a huge challenge. A quick survey of our recent history certainly makes the case for landing to be a non-issue, so what’s the deal?
Yes, we land heavy things on Earth all the time, but we do so with an atmosphere about 99% thicker than the one on Mars. The lack of air pressure and wind on Mars means that there isn’t any real air resistance to aid in slowing down a massive descending craft nor is there any wind to tap into for a glider or parachute to be very effective.
What about the moon?
There’s virtually no atmosphere there, either, yet we landed quite a bit of cargo during the Apollo program. That explanation would be gravity. The moon has less than half the gravity that Mars does, which is less than 20% that of Earth. The difference in power required to land a crew module on the moon vs. Mars could maybe be compared to landing a mini Falcon 9 with a micro drone onto a piece of plywood in the middle of a swimming pool versus dropping, say, a child-sized Tesla Model S. Maybe not, but it’s fun to think about. So cute…
In 2012, NASA landed the rover “Curiosity” on the Martian surface using a very complicated parachute-plus-propulsion crane system. The existence of such technology somewhat gives the impression that landing things on Mars is already a solved problem. If what we’re landing is about the mass of a small car, this impression is true, but if we are landing anything significantly larger, such as a capsule carrying humans for example, then the problem is still a problem as larger masses require greater counterforce to slow down their descent.
SpaceX Gives Back
SpaceX’s focus on developing propulsive landing systems is aiming to solve the problem of counterforce. This is actually an area where SpaceX is supporting NASA’s Journey to Mars (instead of the other way around) via the data obtained from their Falcon 9 landings to date. One of NASA’s proposed solutions is a “supersonic retropropulsion” system, meaning periodic firing of the engines on a craft to counter the speed resulting from a trip through the (small) Martian atmosphere. To date, NASA hasn’t been able to test this type of technology in an environment similar to what would be encountered on Mars whereas SpaceX has. By studying the results of SpaceX’s Falcon 9 first stage landings, NASA can use the information gathered for their retropropulsive system designs.
Back scratchers, unite!
Crew Systems
The crew ships under development for taking astronauts to Mars have a number of requirements to meet to be successful transports, and from the information available thus far, their progress seems to be moving along swimmingly. SpaceX’s Crew Dragon has been announced with photos and basic details provided, and NASA’s Orion capsule has enjoyed a marketing campaign providing numerous details for quite some time now.
The primary improvements in both capsule designs over the Apollo age seem to be more room, better heat shields, better software, and glass cockpits (i.e., touch screens). Crew Dragon can also hover (eventually landing) and blast off from its rocket transport in an emergency event. The aesthetics are pretty swank as well. Why isn’t there anything vastly different from what we’ve already done?
If it ain’t broke, don’t fix it.
Crew Cargo & Environmental Systems
Environmental systems and supplies to keep human travelers alive and (mostly) happy have been generally worked out via prior orbital missions, especially on the long-term International Space Station (ISS) ones. However, there are a few added “catches” that a mission to Mars throws in.
First, the ISS is able to maintain long-term human crews due to regular cargo resupply missions. The travel distance for Mars-bound astronauts will render such types of delivery schedules unavailable. No cargo deliveries mean carrying all the cargo required for the entire trip, something that generally demands multiple rocket launches for supply assembly before heading out.
Other than the higher expense of multiple launches, this seems to just be a matter of logistics and cost effectiveness rather than capability. SpaceX’s Falcon Heavy was certainly designed with these cargo requirements in mind considering the power packed into its engines.
Second, life support system technology has been developed and advanced over the years on the ISS, but it requires a lot of maintenance to upkeep. Perhaps the life support systems on the new crew capsules will endure for longer than the systems on the ISS as they have the data available to design around, but in the event that upkeep is just a fact of life that can’t be prevented, crews will surely undergo the training to perform repairs as needed as they are now.
As development in the space industry continues, these issues may become minimal. For instance, short-term resupply missions could eventually become available as travel time to Mars decreases with more efficient and powerful propulsion systems. The development of photon propulsion via lasers is ongoing, the goal being to accelerate around 220 pounds of unmanned spacecraft to 25% the speed of light for a three-day trip to Mars. That could almost translate into a sort of Mars-based Amazon Prime. I see what you’re up to, Jeff Bezos!
SpaceX also plans on making regular cargo missions to Mars a bi-annual affair, so as long as supplies and equipment can last for the 26-month(ish) window between launches, it’s Mars-certified.
Zero Gravity Impacts
When astronauts return from long-term zero gravity, their bodies have to acclimate after changes despite attempts to mitigate the effects through exercise regimens. If you’re just going from Earth to space and then Earth again, no big deal really. But going from Earth to space and then Mars? There won’t be a team of medical professionals ready to drag the astronauts out of the capsule and tell them to take it easy for a while.
That’s kind of an amusing image, actually. The Red Dragon capsule lands but everyone inside is all laid out looking like they are badly hungover from the prior night’s club hopping. Throw in some glitter for Instagram? Sorry, I’m digressing…
What exactly are the effects of long-term zero gravity on the human body? According to NASA, muscles (including the heart) can atrophy at a rate of 5% per week, bones at 1% per month, and about 22% of blood volume is lost. These are generally recoverable, but it takes about as long to recover a muscle as it did to lose it, and bone can take two to three years to grow back if it does at all. The lower Mars gravity would probably mean an easier recovery process, but there’s still a process involved and the entire crew is affected. Not even regular exercise can mimic all of the (needed) effects that gravity has on the body.
The concept of using a rotating space craft to mitigate this problem is seen so often in movies and space habitat designs that one might think it’s a “given” that some version of it will be used for Mars travel. In fact, The Mars Society’s “Mars Direct” plan even advocates for a rotating craft which uses the spent upper stage of the rocket as an anchor to spin the crew capsule around for artificial gravity simulation.
Since nothing looked like it would “spin” on the Dragon and Falcon Heavy media releases nor did there seem to be much room for a treadmill, I was really curious about what SpaceX’s answer to long term zero gravity was. From what I’ve read, it isn’t seen as a real problem or “show stopper”, if you will. Again, I’m missing a direct source to cite for any Elon or SpaceX comment on the issue, but from commentary around the web, it seems that the issue has surfaced in public discussions with no particular technology addressed to overcome it.
Perhaps this is one more thing we will see come September when SpaceX’s Mars Colonial Transporter plans are revealed. I can’t imagine that one hundred body-worn, space-traveling colonists wouldn’t be a problem needing to be addressed.
Surface Power
When it comes to any sort of space travel, solar seems to be one of the “go to” choices for power sourcing outside of propulsion. Unfortunately, when it comes to Mars exploration, solar power alone may not be enough. For one thing, Mars receives less than half the sunlight that Earth does, and most of that sunlight is only available in certain regions of the planet such as around the equator. Frequent light-blocking dust storms are also a problem. NASA’s STMD has outlined advanced batteries, regenerative fuel cells, fission nuclear systems, and solar arrays as the choice technologies for development in the area of surface power.
Now, I admit that I don’t have all the time in the world to watch every Elon Musk video in existence (although I do enjoy the convenience of a YouTube channel with nearly all of them compiled), but I haven’t had much luck finding original sources of either Elon or a SpaceX executive directly commenting on the subject of surface power. I’m sure something is out there either eluding me or that I’ve forgotten I’ve seen.
Crew Dragon uses solar arrays attached to its trunk during flight for power, but the trunk is jettisoned prior to reentry (or entry when talking about Mars). I could make an educated guess based on the connections between Elon Musk and Solar City, Tesla, and the methane-based Raptor engines to presuppose that solar power, advanced batteries, and methane fuel generation are part of SpaceX’s surface power plans, but in the end it’s just a guess. Also, if Raptor is using a methane-based fuel because it can be resourced outside of Earth, I’d imagine that surface power would tie into that same manufacturing capability.
Mars One plans to utilize solar power for its surface power needs, specifically “thin film solar photovoltaic panels”. There isn’t much detail about their required panel size available, only that they should have the ability to be rolled up and transported elsewhere if need be. Finally, as I mentioned previously, the “Mars Direct” plan advocates tapping into fuel generation structures that manufactures a Methane-Oxygen bi-propellant.
Overall, it seems everyone is likely on a similar page regarding power sources – nothing crazy or unheard of, unless you think nuclear anything is too risky.
Coming Up on Countdown to Mars…

Wernher von Braun and Walt Disney | Credit: NASA on The Commons
Cosmic space radiation! There’s so much on this topic, it’s worth an entire piece on its own. Spoiler alert: Elon doesn’t seem to be worried about that issue. Why not?
Also, stay tuned for a (theoretical) discussion on future Martian government…
Did you know that Werner von Braun had a fictional tale of a Martian society wherein the elected Martian leader was called “The Elon”? It’s almost as though he really did take a trip on that Nazi time traveling bell thing…
Elon Musk
SpaceX’s next project will produce Starships at a level that sounds impossible
1,000 rockets per year is an insane number, especially considering Starship’s sheer size.
Elon Musk has revealed bold plans for SpaceX’s newest Starbase facility in Texas, predicting it will become a birthplace for “so many spaceships.” The upcoming “Gigabay,” a massive $250 million production hub in Starbase, Texas, is designed to manufacture up to 1,000 Starship rockets per year.
That’s an insane number of rockets for a single facility, especially considering Starship’s sheer size.
One of the world’s largest industrial structures
SpaceX’s Gigabay is expected to stand roughly 380 feet tall and enclose 46.5 million cubic feet of interior space, making it one of the largest industrial structures to date. The facility will feature 24 dedicated work cells for assembling and refurbishing Starship and Super Heavy vehicles, complete with heavy-duty cranes capable of lifting up to 400 U.S. tons, as noted in a Times of India report.
Construction crews have already placed four tower cranes on-site, with completion targeted for December 2026. Once operational, the Gigabay is expected to boost SpaceX’s launch cadence dramatically, as it would be able to build up to 1,000 reusable Starships per year, as noted in a report from the Dallas Express. Musk stated that the Gigabay will be “one of the biggest structures in the world” and hinted that it represents a major leap in Starbase’s evolution from test site to full-scale production hub.
A key step toward Mars and beyond
Starship is SpaceX’s heavy-lift rocket system, and it remains a key part of Elon Musk’s vision of a multiplanetary future. The vehicle can carry 100–150 tonnes to low Earth orbit and up to 250 tonnes in expendable mode. With several successful flights to date, including a perfect 11th test flight, the Starship program continues to refine its reusable launch system ahead of crewed lunar missions under NASA’s Artemis initiative.
Starship is unlike any other spacecraft that has been produced in the past. As per Elon Musk, Starship is a “planet-colonizer” class rocket, as the magnitude of such a task “makes other space transport task trivial.” Considering Starship’s capabilities, it could indeed become the spacecraft that makes a Moon or Mars base feasible.
Cybertruck
Tesla Cybertruck fleet takes over at SpaceX’s Starbase
Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.
Tesla Cybertrucks have taken over at SpaceX’s Starbase facility in Texas, as hundreds of the all-electric pickup trucks were spotted late last week rounding out a massive fleet of vehicles.
The Cybertruck fleet is geared toward replacing gas vehicles that are used at Starbase for everyday operations. The only surprise about this is that it was not done sooner:
Was just visiting. pic.twitter.com/5Q9wPPaeuH
— Derek Li (@derek1ee) October 31, 2025
Deliveries have been going on for a few weeks, as Cybertrucks have made their way across the state of Texas from Austin to Starbase so they could be included in SpaceX’s fleet of vehicles at the facility.
Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.
However, there are some other perspectives to consider as SpaceX is utilizing such a massive fleet of Cybertrucks. Some media outlets (unsurprisingly) are seeing this as a move of weakness by both Tesla and SpaceX, as the aerospace company is, in a sense, “bailing out” lagging sales for the all-electric pickup.
It’s no secret that Tesla has struggled with the Cybertruck this year, and deliveries have been underwhelming in the sense that the company was anticipating between 1 million and 2 million orders for the vehicle before it was widely produced.
A lot of things changed with the Cybertruck between its 2019 unveiling and 2023 initial deliveries, most notably, price.
The price of the Cybertruck swelled significantly and priced out many of those who had pre-ordered it. Some have weighed the option of whether this purchase was a way to get rid of sitting inventory.
However, it seems more logical to consider the fact that SpaceX was likely always going to transition to Teslas for its fleet, especially at Starship, at some point.
It doesn’t seem out of the question that one Musk company would utilize another Musk company’s products, especially considering the Cybertruck has been teased as the vehicle that would be present on Mars.
News
SpaceX successfully launches 100th Starlink mission of 2025
With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.
SpaceX achieved its 100th Starlink mission of the year on Friday, October 31, marking another milestone for 2025.
A Falcon 9 rocket carrying 28 Starlink broadband satellites successfully lifted off from Vandenberg Space Force Base in California at 4:41 p.m. ET, carrying another 28 Starlink satellites to Low Earth Orbit (LEO).
Falcon 9 booster’s 29th flight
Roughly 8.5 minutes after liftoff, the Falcon 9’s first stage touched down on the drone ship Of Course I Still Love You in the Pacific Ocean. This marked the booster’s 29th flight, which is approaching SpaceX’s reuse record of 31 missions.
This latest mission adds to SpaceX’s impressive 138 Falcon 9 launches in 2025, 99 of which were dedicated to Starlink, according to Space.com. The company’s focus on reusing boosters has enabled this breakneck pace, with multiple launches each week supporting both Starlink’s expansion and external customers.
Starlink’s network continues massive global expansion
Starlink remains the largest active satellite constellation in history, with more than 10,000 satellites launched, nearly 8,800 of which are currently active. SpaceX recently achieved Starlink’s 10,000-satellite milestone. With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.
Starlink, which provides high-speed, low-latency internet connectivity even to the world’s most remote areas, has been proven to be life-changing technology for people across the globe. The service is currently operational in about 150 countries, and it currently has over 5 million subscribers worldwide. From this number, 2.7 million joined over the past year.
-
News5 days agoTesla shares rare peek at Semi factory’s interior
-
Elon Musk5 days agoTesla says texting and driving capability is coming ‘in a month or two’
-
News4 days agoTesla makes online ordering even easier
-
News4 days agoTesla Model Y Performance set for new market entrance in Q1
-
News5 days agoTesla Cybercab production starts Q2 2026, Elon Musk confirms
-
News5 days agoTesla China expecting full FSD approval in Q1 2026: Elon Musk
-
News6 days agoTesla Model Y Performance is rapidly moving toward customer deliveries
-
News3 days agoTesla is launching a crazy new Rental program with cheap daily rates











