Connect with us

News

Wireless charging hotspots let drones fly forever through in-air recharges

Published

on

A Portland, Oregon-based company named Global Energy Transmission (GET) is developing a network of wireless charging hotspots for drones. With only six minutes hovering over a grid for a full charge, an electric industrial class drone can repeat the cycle of charging and flying until its battery is drained without ever having to land or connect to a cable using this technology. GET’s long-term vision includes a cell-tower like infrastructure comprising numerous charging stations, enabling indefinite flying time for drones in the network. If successful, this technology could reinvent the commercial drone industry, providing 24/7 solutions in dedicated areas for things like deliveries, monitoring, and security.

Per GET’s website, the drone built for the charging network technology weighs about 18 lbs without the battery, can carry about 15 lbs, and can fly for 28 minutes weighing 30 lbs at takeoff. The maximum flying speed is around 37 mph, and servicing of the drone is recommended every 300-1000 flight hours. The maximum power transmitted during the charging stage is 12kW – it consumes 1550W while hovering.

Overall, the GET charging grid looks generally like a hexagonal frame raised onto poles with wires laced throughout. Spanning 26 feet across, the frame’s size is designed to enable multiple drones to charge simultaneously. A working prototype of the full system has already been showcased, and numerous videos are also available for anyone interested in more detail about the development team’s process. One such video lasts over two hours to demonstrate multiple battery-drains and in-air recharges on a continuous feed.

The GET In-Flight Wireless Charging System – a drone is charging mid-flight. | Credit: GET (Global Energy Transmission)

Drones are currently being used to provide numerous consumer solutions in a wide variety of markets. Along with video and photography, these small flying crafts are being utilized or developed for places like the construction industry for mapping and site monitoring, search and rescue missions, and even transporting organs between hospitals. Of course, the short life span of a drone battery – about 22 minutes in most cases – is well known to drone pilots, making the potential for a wireless charging network an innovative opportunity. According to William R. Kallman, GET’s US Director and partner from the Draper Network in a recent interview, their technology could also be scaled up to transfer 200 kW of power in the future, putting drone taxis within the realm of GET’s potential customer base.

GET announced its charging system at the AUVSI Xponential May 2018 show in Denver, Colorado and made an appearance at this year’s Consumer Electronics Show 2019 in Las Vegas. While the company is officially based in the US, there is also a branch office and engineering center in Moscow, Russia. Their executives, as well as most of its team, are originally from Moscow with backgrounds in physics and chemical engineering, among others.

The company is currently taking pre-orders for its GET Air™ solution which will include a wireless power charger, a 26-foot diameter charging area/grid, and two GET Air™ industrial class drones with pre-installed wireless charging systems. Expansions are also available, including an Autonomous Power Module for independent power supply to charging stations with limited or no access to electricity. Operational and maintenance support are included, all for a package price of $120,000.

Advertisement
-->

Watch the below video to see the GET drone charging system in action with some further details by their CEO:

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading