Connect with us
ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

News

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Credit: ZapBatt

Published

on

ZapBatt and Toshiba are partnering to unlock proven lithium titanium oxide (LTO) battery technology for micro-mobility. In a press release emailed to me, ZapBatt shared that it’s merging its proprietary artificial intelligence technology and next-gen battery hardware with Toshiba’s lithium titanium oxide battery cells.

The goal is to create a new battery option for the micro-mobility marketplace. This will enable LTO batteries to be faster, smarter, and more economical while allowing for real-time battery management and optimization.

Three challenges of using Lithium Titanium Oxide chemistry in batteries solved

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Photo credit: ZapBatt

 

There are three challenges of using LTO chemistry in batteries that ZapBatt is helping Toshiba solve.

  1. Chips. At the time, chips didn’t exist to work with LTO, however, ZapBatt’s custom LTO battery management system (BMS) is changing this. The BMS works at the unique voltages of LTO with the ability to be re-configured to adapt as the cell chemistry grows. This enables a programmable chip that works with other chemistries and voltages.
  2. Voltage. ZapBatt has a bi-directional adaptive terminal voltage (BATV) technology. This allows the battery system’s voltage control to be digitally controlled with software. Think of a universal adapter that allows LTO batteries to be a one-for-one swap with any lithium-ion chemistry without the need for modification to the system. The benefit is the ability to re-configure batteries for other applications at software speed.
  3.  Energy Density. ZapBatt will use integrated AI which allows the battery to improve the system’s performance. The AI will analyze how energy is being used. One example is enhanced regenerative braking in e-bikes.

Toshiba & ZapBatt Statements

Greg Mack, Toshiba’s Vice President and General Manager of the Power Electronics Division shared the following statement about the new partnership.

“ZapBatt unlocked the potential of Toshiba’s LTO chemistry for a variety of industries and new markets with disruptive technology, moving away from the ‘miracle battery’ trap and providing a real solution hitting the market today.”

“With ZapBatt’s hardware and software, and our LTO chemistry, there is no other solution as fast, safe, and cost-effective on the market.”

Advertisement
-->

Charlie Welch, CEO and Co-Founder of ZapBatt also shared a statement.

“For global carbon reduction and electrification, we need better battery solutions now, not in ten years. To address this problem, we worked with Toshiba to allow lithium titanium oxide to come alive, bridge into new markets quickly, and provide maximum economic and environmental benefit.”

“Unlike other chemistries, lithium titanium oxide is very efficient in a variety of conditions, not just on a lab bench. It’s like the Seabiscuit of batteries.”

How Toshiba’s Lithium Titanium Oxide Cells Will Work

Photo Credit: ZapBatt

The company noted that the cells are designed for fast charging and high-power environments with a minimal decrease in function–even after thousands of charges and uses.

These cells are ideal for micro-mobility applications and will provide up to a 100% usable charge without shortening the cycle life. They also perform in freezing temperatures as low as -30 degrees celsius.

The LTO cells also reduce operating expenses and e-waste. And they eliminate the risk of fire with ZapBatt’s LTO system. ZapBatt noted that its LTO batteries have virtually no risk for self-thermal runaway.

Advertisement
-->

In addition to this, ZapBatt pointed out that its combination of machine learning and proprietary hardware will continuously improve battery performance. The software analyzes 26 data points that illustrate how the battery performs to improve charging operations.

ZapBatt’s New Hardware Solution

Photo credit: ZapBatt

ZapBatt built a new hardware solution for its LTO BATV system. The BATV system allows the system to control the battery voltage input and output all digitally with software. This allows LTO batteries to integrate with a variety of applications.

Amiad Zionpur, ZapBatt’s Chief Operating Officer shared some thoughts about this technology.

“ZapBatt’s bi-directional adaptive terminal voltage (BATV) technology allows the battery to reconfigure itself based on the customer’s needs, essentially making it a universal adapter that has the potential to change the battery landscape completely.”

“Because of this unique ability, the e-bike battery can be used in many different applications, from micro-mobility to consumer products.”

 

Advertisement
-->

My Interview With ZapBatt CEO, Charlie Welch

In June, I interviewed Charlie for CleanTechnica in a two-part series. In the first part, which you can read here, Charlie shared how he got started with ZapBatt, the difference between ZapBatt and the overall battery industry, and charging in just 15 minutes.

In the second part of our interview, which you can read here, we spoke about overlooked technologies, the industries that ZapBatt wants to impact, and availability and sustainability.

Johnna Crider is a Baton Rouge writer covering Tesla, Elon Musk, EVs, and clean energy & supports Tesla's mission. Johnna also interviewed Elon Musk and you can listen here

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading