Connect with us
ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

News

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Credit: ZapBatt

Published

on

ZapBatt and Toshiba are partnering to unlock proven lithium titanium oxide (LTO) battery technology for micro-mobility. In a press release emailed to me, ZapBatt shared that it’s merging its proprietary artificial intelligence technology and next-gen battery hardware with Toshiba’s lithium titanium oxide battery cells.

The goal is to create a new battery option for the micro-mobility marketplace. This will enable LTO batteries to be faster, smarter, and more economical while allowing for real-time battery management and optimization.

Three challenges of using Lithium Titanium Oxide chemistry in batteries solved

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Photo credit: ZapBatt

 

There are three challenges of using LTO chemistry in batteries that ZapBatt is helping Toshiba solve.

  1. Chips. At the time, chips didn’t exist to work with LTO, however, ZapBatt’s custom LTO battery management system (BMS) is changing this. The BMS works at the unique voltages of LTO with the ability to be re-configured to adapt as the cell chemistry grows. This enables a programmable chip that works with other chemistries and voltages.
  2. Voltage. ZapBatt has a bi-directional adaptive terminal voltage (BATV) technology. This allows the battery system’s voltage control to be digitally controlled with software. Think of a universal adapter that allows LTO batteries to be a one-for-one swap with any lithium-ion chemistry without the need for modification to the system. The benefit is the ability to re-configure batteries for other applications at software speed.
  3.  Energy Density. ZapBatt will use integrated AI which allows the battery to improve the system’s performance. The AI will analyze how energy is being used. One example is enhanced regenerative braking in e-bikes.

Toshiba & ZapBatt Statements

Greg Mack, Toshiba’s Vice President and General Manager of the Power Electronics Division shared the following statement about the new partnership.

“ZapBatt unlocked the potential of Toshiba’s LTO chemistry for a variety of industries and new markets with disruptive technology, moving away from the ‘miracle battery’ trap and providing a real solution hitting the market today.”

“With ZapBatt’s hardware and software, and our LTO chemistry, there is no other solution as fast, safe, and cost-effective on the market.”

Advertisement
-->

Charlie Welch, CEO and Co-Founder of ZapBatt also shared a statement.

“For global carbon reduction and electrification, we need better battery solutions now, not in ten years. To address this problem, we worked with Toshiba to allow lithium titanium oxide to come alive, bridge into new markets quickly, and provide maximum economic and environmental benefit.”

“Unlike other chemistries, lithium titanium oxide is very efficient in a variety of conditions, not just on a lab bench. It’s like the Seabiscuit of batteries.”

How Toshiba’s Lithium Titanium Oxide Cells Will Work

Photo Credit: ZapBatt

The company noted that the cells are designed for fast charging and high-power environments with a minimal decrease in function–even after thousands of charges and uses.

These cells are ideal for micro-mobility applications and will provide up to a 100% usable charge without shortening the cycle life. They also perform in freezing temperatures as low as -30 degrees celsius.

The LTO cells also reduce operating expenses and e-waste. And they eliminate the risk of fire with ZapBatt’s LTO system. ZapBatt noted that its LTO batteries have virtually no risk for self-thermal runaway.

Advertisement
-->

In addition to this, ZapBatt pointed out that its combination of machine learning and proprietary hardware will continuously improve battery performance. The software analyzes 26 data points that illustrate how the battery performs to improve charging operations.

ZapBatt’s New Hardware Solution

Photo credit: ZapBatt

ZapBatt built a new hardware solution for its LTO BATV system. The BATV system allows the system to control the battery voltage input and output all digitally with software. This allows LTO batteries to integrate with a variety of applications.

Amiad Zionpur, ZapBatt’s Chief Operating Officer shared some thoughts about this technology.

“ZapBatt’s bi-directional adaptive terminal voltage (BATV) technology allows the battery to reconfigure itself based on the customer’s needs, essentially making it a universal adapter that has the potential to change the battery landscape completely.”

“Because of this unique ability, the e-bike battery can be used in many different applications, from micro-mobility to consumer products.”

 

Advertisement
-->

My Interview With ZapBatt CEO, Charlie Welch

In June, I interviewed Charlie for CleanTechnica in a two-part series. In the first part, which you can read here, Charlie shared how he got started with ZapBatt, the difference between ZapBatt and the overall battery industry, and charging in just 15 minutes.

In the second part of our interview, which you can read here, we spoke about overlooked technologies, the industries that ZapBatt wants to impact, and availability and sustainability.

Johnna Crider is a Baton Rouge writer covering Tesla, Elon Musk, EVs, and clean energy & supports Tesla's mission. Johnna also interviewed Elon Musk and you can listen here

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Advertisement
-->

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

Advertisement
-->

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

Advertisement
-->

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Advertisement
-->

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Advertisement
-->
Continue Reading