Connect with us
ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

News

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Credit: ZapBatt

Published

on

ZapBatt and Toshiba are partnering to unlock proven lithium titanium oxide (LTO) battery technology for micro-mobility. In a press release emailed to me, ZapBatt shared that it’s merging its proprietary artificial intelligence technology and next-gen battery hardware with Toshiba’s lithium titanium oxide battery cells.

The goal is to create a new battery option for the micro-mobility marketplace. This will enable LTO batteries to be faster, smarter, and more economical while allowing for real-time battery management and optimization.

Three challenges of using Lithium Titanium Oxide chemistry in batteries solved

ZapBatt & Toshiba partner to unlock lithium titanium oxide battery technology

Photo credit: ZapBatt

 

There are three challenges of using LTO chemistry in batteries that ZapBatt is helping Toshiba solve.

  1. Chips. At the time, chips didn’t exist to work with LTO, however, ZapBatt’s custom LTO battery management system (BMS) is changing this. The BMS works at the unique voltages of LTO with the ability to be re-configured to adapt as the cell chemistry grows. This enables a programmable chip that works with other chemistries and voltages.
  2. Voltage. ZapBatt has a bi-directional adaptive terminal voltage (BATV) technology. This allows the battery system’s voltage control to be digitally controlled with software. Think of a universal adapter that allows LTO batteries to be a one-for-one swap with any lithium-ion chemistry without the need for modification to the system. The benefit is the ability to re-configure batteries for other applications at software speed.
  3.  Energy Density. ZapBatt will use integrated AI which allows the battery to improve the system’s performance. The AI will analyze how energy is being used. One example is enhanced regenerative braking in e-bikes.

Toshiba & ZapBatt Statements

Greg Mack, Toshiba’s Vice President and General Manager of the Power Electronics Division shared the following statement about the new partnership.

“ZapBatt unlocked the potential of Toshiba’s LTO chemistry for a variety of industries and new markets with disruptive technology, moving away from the ‘miracle battery’ trap and providing a real solution hitting the market today.”

“With ZapBatt’s hardware and software, and our LTO chemistry, there is no other solution as fast, safe, and cost-effective on the market.”

Advertisement
-->

Charlie Welch, CEO and Co-Founder of ZapBatt also shared a statement.

“For global carbon reduction and electrification, we need better battery solutions now, not in ten years. To address this problem, we worked with Toshiba to allow lithium titanium oxide to come alive, bridge into new markets quickly, and provide maximum economic and environmental benefit.”

“Unlike other chemistries, lithium titanium oxide is very efficient in a variety of conditions, not just on a lab bench. It’s like the Seabiscuit of batteries.”

How Toshiba’s Lithium Titanium Oxide Cells Will Work

Photo Credit: ZapBatt

The company noted that the cells are designed for fast charging and high-power environments with a minimal decrease in function–even after thousands of charges and uses.

These cells are ideal for micro-mobility applications and will provide up to a 100% usable charge without shortening the cycle life. They also perform in freezing temperatures as low as -30 degrees celsius.

The LTO cells also reduce operating expenses and e-waste. And they eliminate the risk of fire with ZapBatt’s LTO system. ZapBatt noted that its LTO batteries have virtually no risk for self-thermal runaway.

Advertisement
-->

In addition to this, ZapBatt pointed out that its combination of machine learning and proprietary hardware will continuously improve battery performance. The software analyzes 26 data points that illustrate how the battery performs to improve charging operations.

ZapBatt’s New Hardware Solution

Photo credit: ZapBatt

ZapBatt built a new hardware solution for its LTO BATV system. The BATV system allows the system to control the battery voltage input and output all digitally with software. This allows LTO batteries to integrate with a variety of applications.

Amiad Zionpur, ZapBatt’s Chief Operating Officer shared some thoughts about this technology.

“ZapBatt’s bi-directional adaptive terminal voltage (BATV) technology allows the battery to reconfigure itself based on the customer’s needs, essentially making it a universal adapter that has the potential to change the battery landscape completely.”

“Because of this unique ability, the e-bike battery can be used in many different applications, from micro-mobility to consumer products.”

 

Advertisement
-->

My Interview With ZapBatt CEO, Charlie Welch

In June, I interviewed Charlie for CleanTechnica in a two-part series. In the first part, which you can read here, Charlie shared how he got started with ZapBatt, the difference between ZapBatt and the overall battery industry, and charging in just 15 minutes.

In the second part of our interview, which you can read here, we spoke about overlooked technologies, the industries that ZapBatt wants to impact, and availability and sustainability.

Johnna Crider is a Baton Rouge writer covering Tesla, Elon Musk, EVs, and clean energy & supports Tesla's mission. Johnna also interviewed Elon Musk and you can listen here

Advertisement
Comments

News

Elon Musk’s Grokipedia surges to 5.6M articles, almost 79% of English Wikipedia

The explosive growth marks a major milestone for the AI-powered online encyclopedia, which was launched by Elon Musk’s xAI just months ago.

Published

on

UK Government, CC BY 2.0 , via Wikimedia Commons

Elon Musk’s Grokipedia has grown to an impressive 5,615,201 articles as of today, closing in on 79% of the English Wikipedia’s current total of 7,119,376 articles. 

The explosive growth marks a major milestone for the AI-powered online encyclopedia, which was launched by Elon Musk’s xAI just months ago. Needless to say, it would only be a matter of time before Grokipedia exceeds English Wikipedia in sheer volume.

Grokipedia’s rapid growth

xAI’s vision for Grokipedia emphasizes neutrality, while Grok’s reasoning capabilities allow for fast drafting and fact-checking. When Elon Musk announced the initiative in late September 2025, he noted that Grokipedia would be an improvement to Wikipedia because it would be designed to avoid bias. 

At the time, Musk noted that Grokipedia “is a necessary step towards the xAI goal of understanding the Universe.”

Grokipedia was launched in late October, and while xAI was careful to list it only as Version 0.1 at the time, the online encyclopedia immediately earned praise. Wikipedia co-founder Larry Sanger highlighted the project’s innovative approach, noting how it leverages AI to fill knowledge gaps and enable rapid updates. Netizens also observed how Grokipedia tends to present articles in a more objective manner compared to Wikipedia, which is edited by humans.

Advertisement
-->

Elon Musk’s ambitious plans

With 5,615,201 total articles, Grokipedia has now grown to almost 79% of English Wikipedia’s article base. This is incredibly quick, though Grokipedia remains text-only for now. xAI, for its part, has now updated the online encyclopedia’s iteration to v0.2. 

Elon Musk has shared bold ideas for Grokipedia, including sending a record of the entire knowledge base to space as part of xAI’s mission to preserve and expand human understanding. At some point, Musk stated that Grokipedia will be renamed to Encyclopedia Galactica, and it will be sent to the cosmos

“When Grokipedia is good enough (long way to go), we will change the name to Encyclopedia Galactica. It will be an open source distillation of all knowledge, including audio, images and video. Join xAI to help build the sci-fi version of the Library of Alexandria!” Musk wrote, adding in a later post that “Copies will be etched in stone and sent to the Moon, Mars and beyond. This time, it will not be lost.”

Continue Reading

News

Tesla Model 3 becomes Netherlands’ best-selling used EV in 2025

More than one in ten second-hand electric cars sold in the country last year was a Tesla Model 3.

Published

on

Credit: Tesla Asia/Twitter

The Tesla Model 3 became the most popular used electric car in the Netherlands in 2025, cementing its dominance well beyond the country’s new-car market. 

After years at the top of Dutch EV sales charts, the Model 3 now leads the country’s second-hand EV market by a wide margin, as record used-car purchases pushed electric vehicles further into the mainstream.

Model 3 takes a commanding lead

The Netherlands recorded more than 2.1 million used car sales last year, the highest level on record. Of those, roughly 4.8%, or about 102,000 vehicles, were electric. Within that growing segment, the Tesla Model 3 stood far ahead of its competitors.

In 2025 alone, 11,338 used Model 3s changed hands, giving the car an 11.1% share of the country’s entire used EV market. That means more than one in ten second-hand electric cars sold in the country last year was a Tesla Model 3, Auto Week Netherlands reported. The scale of its lead is striking: the gap between the Model 3 and the second-place finisher, the Volkswagen ID3, is more than 6,700 vehicles.

Rivals trail as residual values shape rankings

The Volkswagen ID.3 ranked a distant second, with 4,595 used units sold and a 4.5% market share. Close behind was the Audi e-tron, which placed third with 4,236 registrations. As noted by Auto Week Netherlands, relatively low residual values likely boosted the e-tron’s appeal in the used market, despite its higher original price.

Advertisement
-->

Other strong performers included the Kia Niro, the Tesla Model Y, and the Hyundai Kona, highlighting continued demand for compact and midsize electric vehicles with proven range and reliability. No other model, however, came close to matching the Model 3’s scale or market presence.

Continue Reading

News

Tesla Model Y Standard Long Range RWD launches in Europe

The update was announced by Tesla Europe & Middle East in a post on its official social media account on X.

Published

on

Credit: Tesla Europe & Middle East/X

Tesla has expanded the Model Y lineup in Europe with the introduction of the Standard Long Range RWD variant, which offers an impressive 657 km of WLTP range. 

The update was announced by Tesla Europe & Middle East in a post on its official social media account on X.

Model Y Standard Long Range RWD Details

Tesla Europe & Middle East highlighted some of the Model Y Standard Long Range RWD’s most notable specs, from its 657 km of WLTP range to its 2,118 liters of cargo volume. More importantly, Tesla also noted that the newly released variant only consumes 12.7 kWh per 100 km, making it the most efficient Model Y to date. 

The Model Y Standard provides a lower entry point for consumers who wish to enter the Tesla ecosystem at the lowest possible price. While the Model 3 Standard is still more affordable, some consumers might prefer the Model Y Standard due to its larger size and crossover form factor. The fact that the Model Y Standard is equipped with Tesla’s AI4 computer also makes it ready for FSD’s eventual rollout to the region. 

Top Gear’s Model Y Standard review

Top Gear‘s recent review of the Tesla Model Y Standard highlighted some of the vehicle’s most notable features, such as its impressive real-world range, stellar infotainment system, and spacious interior. As per the publication, the Model Y Standard still retains a lot of what makes Tesla’s vehicles well-rounded, even if it’s been equipped with a simplified interior.

Advertisement
-->

Top Gear compared the Model Y Standard to its rivals in the same segment. “The introduction of the Standard trim brings the Model Y in line with the entry price of most of its closest competition. In fact, it’s actually cheaper than a Peugeot e-3008 and costs £5k less than an entry-level Audi Q4 e-tron. It also makes the Ford Mustang Mach-E look a little short with its higher entry price and worse range,” the publication wrote. 

Continue Reading