Connect with us

News

SpaceX’s next Starlink launch will have to wait a bit longer

Pictured here during its third launch, Falcon 9 B1051 is scheduled to fly for the fourth time as early as next week. (SpaceX)

Published

on

According to NASASpaceflight.com sources, SpaceX’s next Starlink satellite launch will have to wait a bit longer after slipping about a week from its former April 16th target.

Recently discussed on Teslarati, SpaceX has planned what is effectively a “return to flight” launch just weeks after Falcon 9 suffered its first in-flight engine failure in almost eight years. While the rocket was able to adjust on the fly to ensure that the overall Starlink mission was a success, the unprecedentedly reused Falcon 9 booster was lost during its landing attempt. More importantly, the Merlin 1D engine failure immediately raised the concern of NASA and the US military, SpaceX’s most important launch customers.

Expected to launch on thrice-flown Falcon 9 booster B1051, a successful return-to-flight so soon after SpaceX’s Starlink-5 anomaly would strongly imply that the company has already identified and characterized the cause of that March 18th hiccup with a significant degree of confidence. While Starlink-6 (the seventh Starlink launch overall) wont exactly replicate the conditions preceding Starlink-5’s in-flight engine failure, a successful launch would hopefully help alleviate any major concerns from SpaceX’s customers. That mission, however, will now have to wait another week or so to launch.

According to NASASpaceflight.com sources, SpaceX’s next launch will have to wait a bit longer. (Richard Angle)

While not quite as flight-proven as B1048, the Falcon 9 booster that suffered an engine failure and was lost at sea last month, SpaceX (according to Next Spaceflight) has assigned Falcon 9 booster B1051 to its seventh Starlink launch. Since its first flight in March 2019, supporting Crew Dragon’s historic orbital launch debut, B1051 has completed two additional orbital-class launches and landings, lofting Canada’s three-satellite Radarsat Constellation Mission (RCM) in June 2019 and SpaceX’s fourth batch of 60 Starlink satellites in January 2020.

On its first mission, B1051 became the first Falcon 9 rocket to launch SpaceX’s new Crew Dragon spacecraft. (SpaceX)
For its second mission, Falcon 9 B1051 was shipped to SpaceX’s Vandenberg facilities to launch Canada’s Radarsat Constellation (RCM) in June 2019. (SpaceX)
B1051’s third launch placed the fourth batch of 60 Starlink satellites in orbit on January 29th, 2020. (Richard Angle)

The Starlink-6 (Flight 7) mission will be B1051’s fourth, making it the sixth SpaceX Falcon 9 booster to launch four times since booster B1048 pushed the envelope in November 2019 – just five months ago. Aside from Falcon 9 B1048’s Starlink-5 engine failure and subsequently unsuccessful landing attempt, SpaceX also lost booster B1056 after its fourth flight in February 2020. Excluding two or three new Falcon 9 boosters assigned to critical missions for NASA and the US military, those two booster losses shrunk SpaceX’s rocket fleet by 30-40%, leaving just three flight-proven Falcon 9 boosters for other Starlink or customer missions.

SpaceX does have two twice-flown Falcon Heavy side boosters, said by CEO Elon Musk to be relatively easy to convert into Falcon 9 boosters, but their status is currently unknown, leaving them as the wildcards of SpaceX’s rocket fleet.

Pictured here during their first landings in April 2019, boosters B1052 and B1053 could potentially be modified to serve as normal Falcon 9 boosters in SpaceX’s rocket fleet. (SpaceX)

For SpaceX to be able to continue an ambitious Starlink launch cadence throughout the rest of 2020, the successful recovery of flight-proven boosters like B1051, B1049, and B1059 will likely be uniquely paramount over the next few months. Assuming SpaceX is able to successfully launch its first astronauts on Crew Dragon (NET late May) and complete a second US military GPS satellite launch (NET June 30th), two once-flown boosters will thankfully enter the company’s fleet, raising it to five (or seven) strong in by July or August.

SpaceX’s next Starlink launch is now scheduled for no earlier than (NET) April 22nd, give or take a day or two.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading